Science & Education

, Volume 20, Issue 2, pp 173–190 | Cite as

Alan F. Chalmers: The Scientist’s Atom and the Philosopher’s Stone: How Science Succeeded and Philosophy Failed to Gain Knowledge of Atoms

Springer, Dordrecht, 2009, ISBN 978-90-481-2361-2, 288 pp
Book Review


  1. Abd-El-Khalick, F. (2004). Over and over again: College students’ views of nature of science. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning and teacher education (pp. 389–425). Dordrecht: Kluwer Academic Publishers.Google Scholar
  2. Adler, M. J. (1978). Aristotle for everybody. New York: Macmillan.Google Scholar
  3. Amsterdamski, S. (1975). Between experience and metaphysics: Philosophical problems in the evolution of science. Dordrercht: Reidel Publishing Company.Google Scholar
  4. Armstrong, D. M. (1973). Belief, truth and knowledge. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Berkeley, G. (1721/1901). De Motu. In A. C. Fraser (Ed.), The works of George Berkeley. Oxford: Oxford University Press. (extracts in D. M. Armstrong (Ed.), Berkeley’s philosophical writings, New York (1965).Google Scholar
  6. Bodner, G. M. (1986). Constructivism: A theory of knowledge. Journal of Chemical Education, 63(10), 873–878.CrossRefGoogle Scholar
  7. Buchdahl, G. (1969). Metaphysics and the philosophy of science. Oxford: Basil Blackwell.Google Scholar
  8. Burtt, E. A. (1932). The metaphysical foundations of modern physical science (2nd ed.). London: Routledge & Kegan Paul.Google Scholar
  9. Chalmers, A. F. (1976). What is this thing called science? St Lucia, Queensland: University of Queensland Press (third edition, Hackett Publishing Company, Indiananapolis, 1999).Google Scholar
  10. Chalmers, A. F. (1998). Retracing the ancient steps to atomic theory. Science & Education, 7(1), 69–84.CrossRefGoogle Scholar
  11. Clericuzio, A. (2000). Elements, principles and corpuscles: A study of atomism and chemistry in the seventeenth century. Dordrecht: Kluwer.Google Scholar
  12. Collingwood, R. G. (1945/1960). The idea of nature. Oxford: Oxford University Press.Google Scholar
  13. Copernicus, N. (1543/1952). On the revolutions of the heavenly spheres (trans. C.G. Wallis). Chicago: Encyclopædia Britannica.Google Scholar
  14. DeBoer, T. J. (1903/1967). The history of philosophy in islam. Dover, New York.Google Scholar
  15. Devitt, M. (1991). Realism & truth (2nd ed.). Oxford: Basil Blackwell.Google Scholar
  16. Dewart, L. (1966). The foundations of belief. New York: Herder & Herder.Google Scholar
  17. diSessa, A. A. (1982). Unlearning Aristotelian physics: A study of knowledge-based learning. Cognitive Science, 6, 37–75.CrossRefGoogle Scholar
  18. Driver, R. (1988). A constructivist approach to curriculum development. In P. Fensham (Ed.), Development and dilemmas in science education (pp. 133–149). New York: Falmer Press.Google Scholar
  19. Duhem, P. (1908/1969). To save the phenomena: An essay on the idea of physical theory from Plato to Galileo. Chicago: University of Chicago Press.Google Scholar
  20. Ebison, M. (1993). Newtonian in mind but Aristotelian in heart. Science & Education, 2(4), 345–362.CrossRefGoogle Scholar
  21. Fensham, P. J. (2004). Defining an identity: The evolution of science education as a field of research. Dordrecht: Kluwer Academic Publishers.Google Scholar
  22. Foley, L. A. (1962). Cosmology: Philosophical and scientific. Milwaukee: The Bruce Publishing Company.Google Scholar
  23. Gjertsen, D. (1989). Science and philosophy: Past and present. Harmondsworth: Penguin.Google Scholar
  24. Harré, R. (1964). Matter and method. London: Macmillan & Co.Google Scholar
  25. Holton, G. (1988). Thematic origins of scientific thought: Kepler to Einstein (2nd ed.). Cambridge MA: Harvard University Press.Google Scholar
  26. Izquerdo-Aymerich, M., & Adúriz-Bravo, A. (2009). Physical construction of the chemical atom: Is it convenient to go all the way back? Science & Education, 18(3–4), 443–455.CrossRefGoogle Scholar
  27. Justi, R., & Gilbert, J. (2000). History and philosophy of science through models: Some challenges in the case of the atom. International Journal of Science Education, 22(9), 993–1009.CrossRefGoogle Scholar
  28. Lakatos, I. (1978). History of science and its rational reconstructions. In J. Worrall & G. Currie (Eds.), The methodology of scientific research programmes: Volume I (pp. 102–138). Cambridge: Cambridge University Press. (Originally 1971).Google Scholar
  29. Lamont, J. (2009). The fall and rise of Aristotelian metaphysics in the philosophy of science. Science & Education, 18(6–7), 861–884.CrossRefGoogle Scholar
  30. Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331–359.CrossRefGoogle Scholar
  31. Lederman, N. G. (2004). Syntax of nature of science within inquiry and science instruction. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science (pp. 301–317). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  32. Lucretius, L. (1977). The nature of things, trans. F.O. Copley. New York: Norton.Google Scholar
  33. MacIntyre, A. (1981). After virtue: A study in moral theory. Notre Dame IN: University of Notre Dame Press.Google Scholar
  34. Matthews, M. R. (1980). The Marxist theory of schooling: A study in epistemology and education. Brighton: Harvester Press.Google Scholar
  35. Matthews, M. R. (Ed.). (1989). The scientific background to modern philosophy. Indianapolis: Hackett Publishing Company.Google Scholar
  36. Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.Google Scholar
  37. Matthews, M. R. (1998a). In defence of modest goals for teaching about the nature of science. Journal of Research in Science Teaching, 35(2), 161–174.CrossRefGoogle Scholar
  38. Matthews, M. R. (Ed.). (1998b). Constructivism in science education: A philosophical examination. Dordrecht: Kluwer Academic Publishers.Google Scholar
  39. Matthews, M. R. (2000a). Time for science education: How teaching the history and philosophy of pendulum motion can contribute to science literacy. New York: Kluwer Academic Publishers.Google Scholar
  40. Matthews, M. R. (2000b). Constructivism in science and mathematics education. In D. C. Phillips (Ed.), National Society for the study of education 99th yearbook (pp. 161–192). Chicago: National Society for the Study of Education.Google Scholar
  41. Matthews, M. R. (2002). Constructivism and science education: A further evaluation. Journal of Science Education and Technology, 11(2), 121–134.CrossRefGoogle Scholar
  42. Matthews, M. R. (2004). Thomas Kuhn and science education: What lessons can be learnt? Science Education, 88(1), 90–118.CrossRefGoogle Scholar
  43. Matthews, M. R. (2005). Review of Peter Fensham Defining an identity. June 2005 IHPST Newsletter (
  44. Matthews, M. R. (2009). Teaching the philosophical and worldview components of science. Science & Education, 18(6–7), 697–728.CrossRefGoogle Scholar
  45. Meehl, P., & MacCorquodale, K. (1948). On a distinction between hypothetical constructs and intervening variables. Psychological Review, 55, 95–107.CrossRefGoogle Scholar
  46. Newman, W. R. (2004). Promethean ambitions: Alchemy and the quest to perfect nature. Chicago: University of Chicago Press.Google Scholar
  47. Perrin, J. (1913/1990). Atoms, D. Li. Hammick (trans.). Woodbridge CT: Ox Bow Press.Google Scholar
  48. Pieper, J. (1964). Scholasticism: Personalities and problems of medieval philosophy. New York: McGraw-Hill Book Company.Google Scholar
  49. Popper, K. R. (1963). Conjectures and refutations: The growth of scientific knowledge. London: Routledge & Kegan Paul.Google Scholar
  50. Pullman, B. (1998). The atom in the history of human thought. Oxford: Oxford University Press.Google Scholar
  51. Pyle, A. (1997). Atomism and its critics: From Democritus to newton. Bristol: Thoemmes Press.Google Scholar
  52. Randall, J. H. (1962). The career of philosophy. New York: Columbia University Press.Google Scholar
  53. Rodríguez, M. A., & Niaz, M. (2002). How in spite of the rhetoric, history of chemistry has been ignored in presenting atomic structure in textbooks. Science & Education, 11(5), 423–441.CrossRefGoogle Scholar
  54. Rodríguez, M. A., & Niaz, M. (2004). A reconstruction of structure of the atom and its implications for general physics textbooks: A history and philosophy of science perspective. Journal of Science Education and Technology, 13, 409–424.CrossRefGoogle Scholar
  55. Roth, M.-W. (1993). Heisenberg’s uncertainty principle and interpretive research in science education. Journal of Research in Science Teaching, 30(7), 669–680.CrossRefGoogle Scholar
  56. Roth, M.-W., & Roychoudhury, A. (1994). Physics students’ epistemologies and views about knowing and learning. Journal of Research in Science Teaching, 31(1), 5–30.CrossRefGoogle Scholar
  57. Siegfried, R. (2002). From elements to atoms: A history of chemical composition. Philadelphia: American Philosophical Society.Google Scholar
  58. Smith, V. E. (1950). Philosophical physics. New York: Harper and Brothers.Google Scholar
  59. Sokal, A., & Bricmont, J. (1998). Intellectual impostures. London: Profile Books.Google Scholar
  60. Staver, J. (1998). Constructivism: Sound theory for explicating the practice of science and science teaching. Journal of Research in Science Teaching, 35(5), 501–520.CrossRefGoogle Scholar
  61. Stove, D. C. (1982). Popper and after: Four modern irrationalists. Pergamon Press: Oxford.Google Scholar
  62. Stove, D. C. (1991). The Plato cult and other philosophical follies. Oxford: Basil Blackwell.Google Scholar
  63. Suchting, W. A. (1986). Marx and “the problem of knowledge” (pp. 1–52). Macmillan, London: In his Marx and Philosophy.Google Scholar
  64. Suchting, W. A. (1992). Constructivism deconstructed. Science & Education, 1(3), 223–254.CrossRefGoogle Scholar
  65. Suchting, W. A. (1993). Review of Zev Bechler, Newton’s physics and the conceptual structure of the scientific revolution. Science & Education, 2(3), 285–291.CrossRefGoogle Scholar
  66. Suchting, W. A. (1994). Notes on the cultural significance of the sciences. Science & Education, 3(1), 1–56.CrossRefGoogle Scholar
  67. Tamir, P., & Zohar, A. (1991). Anthropomorphism and teleology in reasoning about biological phenomena. Science Education, 75(1), 57–68.CrossRefGoogle Scholar
  68. Thackray, A. (1970). Atoms and powers: An essay on Newtonian matter theory and the development of chemistry. Cambridge MA: Harvard University Press.Google Scholar
  69. Van Eijck, M., & Roth, W.-M. (2007). Keeping the local: Recalibrating the status of science and traditional ecological knowledge (TEK) in education. Science Education, 91, 926–947.CrossRefGoogle Scholar
  70. van Fraassen, B. C. (1980). The scientific image. Oxford: Clarendon Press.CrossRefGoogle Scholar
  71. van Melsen, A. G. (1952). From atomos to Atom. Pittsburgh: Duquesne University Press.Google Scholar
  72. van Melsen, A. G. (1959). The philosophy of nature. Pittsburgh: Duquesne University Press.Google Scholar
  73. Vitzthum, R. C. (1995). Materialism: An affirmative history and definition. Amherst, NY: Prometheus.Google Scholar
  74. Wartofsky, M. W. (1968). Conceptual foundations of scientific thought: An introduction to the philosophy of science. New York: Macmillan.Google Scholar
  75. Weisheipl, J. A. (Ed.). (1961). The dignity of science. Studies in the philosophy of science presented to William Humbert Kane O.P. USA: The Thomist Press.Google Scholar
  76. Whyte, L. L. (1961). Essay on atomism: From Democritus to 1960. Middleton CT: Weslyan University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of EducationUniversity of New South WalesSydneyAustralia

Personalised recommendations