Skip to main content

Advertisement

Log in

Science and Technology, Autonomous and More Interdependent Every Time

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

In a School of Engineering scientific and technological knowledge live together. Science teachers usually try to understand the role that scientific disciplines have over the engineer training. In this paper are descript three historical case studies that could help teachers and students for better understanding the interdependence between science and technology, and the way in which both are related to society. The cases clearly show that both kind of knowledge, scientific and technological, are autonomous, and that their growths involve complex processes. On this way, learners could have an insight of both, the NOS and the NOT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Organization for economic co-operation and development.

  2. Batelle Columbus Laboratories: 1973, Interactions of science and technology in the innovative process: some case studies, for the National Science Foundation NSF.

  3. See note 2.

  4. Data from the following websites (consulted on March 2009): http://www.duracell.com/company/history.asp?id=50&, http://www.ideafinder.com/history/inventions/battery.htm, http://www.mpoweruk.com/history.htm.

  5. See note 2.

  6. See note 2.

  7. http://www.juliantrubin.com/bigten/transistorexperiments.html. Consulted: April 2009.

  8. See note 2.

  9. See note 2.

  10. See note 2.

  11. See note 2.

References

  • Arocena, R. (1993). Ciencia, Tecnología y Sociedad, Cambio Tecnológico y Desarrollo. Buenos Aires, Argentina: CEAL.

    Google Scholar 

  • Aston, R. (1991). Principles of biomedical instrumentation and measurement. New York, USA: Merrill.

    Google Scholar 

  • Astore, W. J. (2003). Smart warriors: A rationale for educating air force academy cadets in the history of science, technology, and warfare. Science & Education, 12(2), 185–196.

    Article  Google Scholar 

  • Bernal, J. D. (1967). Historia Social de la Ciencia. Barcelona, España: Editorial Península.

    Google Scholar 

  • Binnie, A. (2001). Using the electricity and magnetism to enhance teaching. Science & Education, 10(4), 379–389.

    Article  Google Scholar 

  • Boido, G. (1996). Noticias del Planeta Tierra. Galileo Galilei y la revolución científica. Buenos Aires, Argentina: A-Z Editora.

    Google Scholar 

  • Brickhouse, N., Stanley, W. B., & Whitson, J. (1993). Practical reasoning and science education: Implications for theory and practice. Science & Education, 2, 363–375. Kluwer.

    Article  Google Scholar 

  • Cardwell, D. (1971). From Watt to Clausius: The rise of thermodynamics in the early industrial age. Educational, London: Heinemann.

    Google Scholar 

  • Ciapuscio, H. (1994). El Fuego de Prometeo. Tecnología y Sociedad. Buenos Aires, Argentina: EUDEBA.

    Google Scholar 

  • Ciapuscio, H. (1996). El Conocimiento tecnológico. Revista Redes, 6, 177–194. U. N. Quilmes.

    Google Scholar 

  • Clement, L. M. (1920). The vacuum tube as a detector and amplifier. QST, April, 5–7 presented at meeting of the radio club of America, Columbia University, January 16, 1920. http://earlyradiohistory.us/1920vacu.htm, consulted April 09.

  • Cohen, H. F. (1994). The scientific revolution: A historiographical inquiry. Chicago, USA: Chicago UP.

    Google Scholar 

  • Cooley, D. A. (2000). In memoriam: Tribute to Åke Senning, pioneering cardiovascular surgeon. Texas Heart Institute Journal, 27(3), 234–235.

    Google Scholar 

  • Crawley, F., Jianzhong, C., Malmqvist, J., & Brodeur, D. R. (2008). The context of engineering education. In Proceedings of the 4th international CDIO conference. Hogeschool Gent, Gent, Belgium, June 16–19, 1–18. http://www.laspau.harvard.edu/idia/mecesup/readings/CDIO/4ContextEngrEd.pdf, consulted November 2009.

  • Dickinson, H. W. (1963). A short history of the steam engine. London: Cass.

    Google Scholar 

  • Dyer, C. (1997). Medieval farming and technology conclusion. In G. G. Astill & J. Langdon (Eds.), Medieval farming and technology: The impact of agricultural change in Northwest Europe (pp. 293–312). Leiden, The Netherlands: Brill.

    Google Scholar 

  • Easlea, B. (1981). La Liberación Social y los Objetivos de la Ciencia. Madrid, España: Siglo XXI.

    Google Scholar 

  • Focaccia, M., & Simili, R. (2007). Luigi Galvani, physician, surgeon, physicist: From animal electricity to electro-physiology. In H. Whitaker, C. U. M. Smith, & S. Finger (Eds.), Brain, mind and medicine: Essays in eighteenth-century neuroscience, Chap. 10 (pp. 145–158). US: Springer.

    Chapter  Google Scholar 

  • Freeman, C. (1995). The ‘national system of innovation’ in historical perspective. Cambridge Journal of Economics, 19, 5–24.

    Google Scholar 

  • Furman, S. (2001). Hyman’s pacemaker. http://www.hrsonline.org/News/ep-history/topics-in-depth/hymanspacemaker2.cfm#First, consulted April 2009.

  • García, R., & Calantone, R. (2002). A critical look at technological innovation typology and innovativeness terminology: A literature review. The Journal of Product Innovation Management, 19, 110–132.

    Article  Google Scholar 

  • Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge. London: SAGE Publications.

    Google Scholar 

  • Gorman, M. E., & Robinson, K. J. (1998). Using history to teach invention and design: The case of the telephone. Science & Education, 7(2), 173–201.

    Article  Google Scholar 

  • Hills, R. (1989). Power from steam. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hills, R. (2000). Engines: Steam. In A. Hessenbruch (Ed.), Reader’s guide to the history of science (pp. 215–216). Chicago, USA: Dearborn Publishers.

    Google Scholar 

  • Hills, R. L., & Pacey, A. J. (1972). The measurement of power in early steam-driven textile mills. Technology and Culture, 13(2), 29–32.

    Google Scholar 

  • Hodson, D. (1986) Philosophy of science and science education. Journal of Philosophy of Education, 20(2) (Spanish version: Filosofía de la Ciencia y Educación Científica, in Porlán, R., García, J. E. y Cañal, P. (comps) Constructivismo y Enseñanza de las Ciencias. DIADA Editora (Sevilla), 1995).

  • Hodson, D. (1988). Experiments in science and science teaching. Educational Philosophy and Theory, 20(2), 53–66.

    Article  Google Scholar 

  • Hodson, D. (1992). Assessment of practical work: Some consideration in philosophy of science. Science & Education, 1(2), 115–144.

    Article  Google Scholar 

  • Höttecke, D. (2000). How and what can be learned from replicating historical experiments? Science & Education, 9(4), 343–362.

    Article  Google Scholar 

  • Jacomy, B. (1992). Historia de la Técnicas. Buenos Aires, Argentina: Losada.

    Google Scholar 

  • Jeffrey, K., & Parsonnet, V. (1998). Cardiac pacing, 1960–1985. A quarter century of medical and industrial innovation. Circulation, 97, 1978–1991. http://www.circ.ahajournals.org/cgi/content/full/97/19/1978 (consulted April 09).

  • Jenkins, D. (2008). A (not so) brief history of electrocardiography. www.ecg.library.com/ecghist.html (this page was first written on 4th December 1996, last updated 28th November 2008 (consulted: March 2009)).

  • Kipnis, N. (2003). Changing a theory: The case of Volta’s contact electricity. In F. Bevilacqua & E. A. Giannetto (Eds.), Volta and the history of electricity. Pavia Projects Physics. http://ppp.unipv.it/PagesIT/Volta%20and%20the%20history %20of%20Electricity%20frame.htm, 17-36 (consulted April 2009).

  • Langdon, J. (2008). The windmill: A medieval ‘steam engine’?, Paper given at the epstein memorial conference: Technology and human capital formation in the east and west (2008). http://www.lse.ac.uk/collections/economicHistory/Epstein% 20Memorial%20Conference/PAPER-Langdon.pdf, consulted October 2009.

  • Lira, C. (2005). Biography of James Watt. http://www.egr.msu.edu/~lira/supp/steam/wattbio.html, Michigan State University (consulted: March 2009).

  • Manley, K. (2002). The systems approach to innovation studies. Australasian Journal of Information Systems, 9(2), 94–102.

    Google Scholar 

  • Matthews, M. R. (1994). The role of history and philosophy of science. New York, USA: Routledge.

    Google Scholar 

  • Matthews, M. R. (1998). The nature of science and science teaching. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 981–999). Great Britain, UK: Kluger.

    Google Scholar 

  • Mestheme, E. (1970). Technical Change. New York: Mentor.

    Google Scholar 

  • Nelson, R. (Ed.). (1993). National innovation system. New York, USA: Oxford University Press.

    Google Scholar 

  • OECD. (1991). The nature of innovation and the evolution of the productive system. Technology and productivity: The challenge for economic policy (pp. 303–314). Paris, France: OECD.

    Google Scholar 

  • Paun, E. (1990) Assessing the influence of empirical knowledge on the acquisition of scientific concepts. In D. Layton III (Ed.), Innovations in science and technology education (pp. 99–109). UNESCO.

  • Petroski, H. (1996). Harnessing steam. American Scientist, 84, 15–19.

    Google Scholar 

  • Pitt, J. C. (2000). Thinking about technology. Foundations of the philosophy of technology. New York, USA: Seven Bridge Press.

    Google Scholar 

  • Price, D. J. (1963). Little science, big science, 1st edn. Columbia University Press, NY. (Spanish version: Hacia una ciencia de las ciencias, Editorial Ariel, Barcelona, 1973).

  • Santilli, H. (2008). Conocimientos Científico e Ingenieril desde los Laboratorios de Enseñanza, Memorias Noveno Simposio de Investigación en Educación en Física (SIEF 9), en CD, Asociación de Profesores de Física de Argentina (APFA) y F.C.E.I.yA., U. N. Rosario, pp. 1–13 ISBN 978-987-22880-4-4.

  • Santilli, H., & Speltini, C. (2003). Los laboratorios de enseñanza de física desde una perspectiva histórica y social. Revista Argentina de Enseñanza de la Ingeniería, 4(6), 23–35.

    Google Scholar 

  • Scherer, F. M. (1965). Invention and innovation in the Watt-Boulton steam engine venture. Technology and Culture, 6(2), 165–187 (Spring 1965).

  • Simon, H. (1969). The sciences of the artificial. MIT Press, Cambridge, MA, USA (Spanish version (1978), Las Ciencias de lo Artificial, Editorial ATE, Barcelona).

  • Sproule, A. (1992). James Watt. Watford, Herts, UK: Exley Publications.

    Google Scholar 

  • Tala, S. (2009). Unified view of science and technology for education: Technoscience and technoscience education. Science & Education, 18(3–4), 275–298.

    Article  Google Scholar 

  • Thuillier, P. (1988). De Arquímedes a Einstein. Las caras ocultas de la invención científica, Alianza Editorial, Madrid, Spain (French version: D’Archimède à Einstein. Fayard, Paris, France (1988)).

  • Vicenti, W. (1990). What engineers know and how they know it. Baltimore, USA: Johns Hopkins University Press.

    Google Scholar 

  • Waits, R. K. (2003). Edison’s vacuum technology patents. Journal of Vacuum Science and Technology, 21(4), 881–891, http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JVTAD6000021000004000881000001&idtype=cvips&gi.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haydée Santilli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santilli, H. Science and Technology, Autonomous and More Interdependent Every Time. Sci & Educ 21, 797–811 (2012). https://doi.org/10.1007/s11191-009-9224-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-009-9224-4

Keywords

Navigation