Advertisement

Science & Education

, Volume 21, Issue 6, pp 797–811 | Cite as

Science and Technology, Autonomous and More Interdependent Every Time

  • Haydée Santilli
Article

Abstract

In a School of Engineering scientific and technological knowledge live together. Science teachers usually try to understand the role that scientific disciplines have over the engineer training. In this paper are descript three historical case studies that could help teachers and students for better understanding the interdependence between science and technology, and the way in which both are related to society. The cases clearly show that both kind of knowledge, scientific and technological, are autonomous, and that their growths involve complex processes. On this way, learners could have an insight of both, the NOS and the NOT.

Keywords

Science Teacher Historical Case Scientific Revolution Steam Engine Artificial Pacemaker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arocena, R. (1993). Ciencia, Tecnología y Sociedad, Cambio Tecnológico y Desarrollo. Buenos Aires, Argentina: CEAL.Google Scholar
  2. Aston, R. (1991). Principles of biomedical instrumentation and measurement. New York, USA: Merrill.Google Scholar
  3. Astore, W. J. (2003). Smart warriors: A rationale for educating air force academy cadets in the history of science, technology, and warfare. Science & Education, 12(2), 185–196.CrossRefGoogle Scholar
  4. Bernal, J. D. (1967). Historia Social de la Ciencia. Barcelona, España: Editorial Península.Google Scholar
  5. Binnie, A. (2001). Using the electricity and magnetism to enhance teaching. Science & Education, 10(4), 379–389.CrossRefGoogle Scholar
  6. Boido, G. (1996). Noticias del Planeta Tierra. Galileo Galilei y la revolución científica. Buenos Aires, Argentina: A-Z Editora.Google Scholar
  7. Brickhouse, N., Stanley, W. B., & Whitson, J. (1993). Practical reasoning and science education: Implications for theory and practice. Science & Education, 2, 363–375. Kluwer.CrossRefGoogle Scholar
  8. Cardwell, D. (1971). From Watt to Clausius: The rise of thermodynamics in the early industrial age. Educational, London: Heinemann.Google Scholar
  9. Ciapuscio, H. (1994). El Fuego de Prometeo. Tecnología y Sociedad. Buenos Aires, Argentina: EUDEBA.Google Scholar
  10. Ciapuscio, H. (1996). El Conocimiento tecnológico. Revista Redes, 6, 177–194. U. N. Quilmes.Google Scholar
  11. Clement, L. M. (1920). The vacuum tube as a detector and amplifier. QST, April, 5–7 presented at meeting of the radio club of America, Columbia University, January 16, 1920. http://earlyradiohistory.us/1920vacu.htm, consulted April 09.
  12. Cohen, H. F. (1994). The scientific revolution: A historiographical inquiry. Chicago, USA: Chicago UP.Google Scholar
  13. Cooley, D. A. (2000). In memoriam: Tribute to Åke Senning, pioneering cardiovascular surgeon. Texas Heart Institute Journal, 27(3), 234–235.Google Scholar
  14. Crawley, F., Jianzhong, C., Malmqvist, J., & Brodeur, D. R. (2008). The context of engineering education. In Proceedings of the 4th international CDIO conference. Hogeschool Gent, Gent, Belgium, June 16–19, 1–18. http://www.laspau.harvard.edu/idia/mecesup/readings/CDIO/4ContextEngrEd.pdf, consulted November 2009.
  15. Dickinson, H. W. (1963). A short history of the steam engine. London: Cass.Google Scholar
  16. Dyer, C. (1997). Medieval farming and technology conclusion. In G. G. Astill & J. Langdon (Eds.), Medieval farming and technology: The impact of agricultural change in Northwest Europe (pp. 293–312). Leiden, The Netherlands: Brill.Google Scholar
  17. Easlea, B. (1981). La Liberación Social y los Objetivos de la Ciencia. Madrid, España: Siglo XXI.Google Scholar
  18. Focaccia, M., & Simili, R. (2007). Luigi Galvani, physician, surgeon, physicist: From animal electricity to electro-physiology. In H. Whitaker, C. U. M. Smith, & S. Finger (Eds.), Brain, mind and medicine: Essays in eighteenth-century neuroscience, Chap. 10 (pp. 145–158). US: Springer.CrossRefGoogle Scholar
  19. Freeman, C. (1995). The ‘national system of innovation’ in historical perspective. Cambridge Journal of Economics, 19, 5–24.Google Scholar
  20. Furman, S. (2001). Hyman’s pacemaker. http://www.hrsonline.org/News/ep-history/topics-in-depth/hymanspacemaker2.cfm#First, consulted April 2009.
  21. García, R., & Calantone, R. (2002). A critical look at technological innovation typology and innovativeness terminology: A literature review. The Journal of Product Innovation Management, 19, 110–132.CrossRefGoogle Scholar
  22. Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge. London: SAGE Publications.Google Scholar
  23. Gorman, M. E., & Robinson, K. J. (1998). Using history to teach invention and design: The case of the telephone. Science & Education, 7(2), 173–201.CrossRefGoogle Scholar
  24. Hills, R. (1989). Power from steam. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Hills, R. (2000). Engines: Steam. In A. Hessenbruch (Ed.), Reader’s guide to the history of science (pp. 215–216). Chicago, USA: Dearborn Publishers.Google Scholar
  26. Hills, R. L., & Pacey, A. J. (1972). The measurement of power in early steam-driven textile mills. Technology and Culture, 13(2), 29–32.Google Scholar
  27. Hodson, D. (1986) Philosophy of science and science education. Journal of Philosophy of Education, 20(2) (Spanish version: Filosofía de la Ciencia y Educación Científica, in Porlán, R., García, J. E. y Cañal, P. (comps) Constructivismo y Enseñanza de las Ciencias. DIADA Editora (Sevilla), 1995).Google Scholar
  28. Hodson, D. (1988). Experiments in science and science teaching. Educational Philosophy and Theory, 20(2), 53–66.CrossRefGoogle Scholar
  29. Hodson, D. (1992). Assessment of practical work: Some consideration in philosophy of science. Science & Education, 1(2), 115–144.CrossRefGoogle Scholar
  30. Höttecke, D. (2000). How and what can be learned from replicating historical experiments? Science & Education, 9(4), 343–362.CrossRefGoogle Scholar
  31. Jacomy, B. (1992). Historia de la Técnicas. Buenos Aires, Argentina: Losada.Google Scholar
  32. Jeffrey, K., & Parsonnet, V. (1998). Cardiac pacing, 1960–1985. A quarter century of medical and industrial innovation. Circulation, 97, 1978–1991. http://www.circ.ahajournals.org/cgi/content/full/97/19/1978 (consulted April 09).
  33. Jenkins, D. (2008). A (not so) brief history of electrocardiography. www.ecg.library.com/ecghist.html (this page was first written on 4th December 1996, last updated 28th November 2008 (consulted: March 2009)).
  34. Kipnis, N. (2003). Changing a theory: The case of Volta’s contact electricity. In F. Bevilacqua & E. A. Giannetto (Eds.), Volta and the history of electricity. Pavia Projects Physics. http://ppp.unipv.it/PagesIT/Volta%20and%20the%20history %20of%20Electricity%20frame.htm, 17-36 (consulted April 2009).
  35. Langdon, J. (2008). The windmill: A medieval ‘steam engine’?, Paper given at the epstein memorial conference: Technology and human capital formation in the east and west (2008). http://www.lse.ac.uk/collections/economicHistory/Epstein% 20Memorial%20Conference/PAPER-Langdon.pdf, consulted October 2009.
  36. Lira, C. (2005). Biography of James Watt. http://www.egr.msu.edu/~lira/supp/steam/wattbio.html, Michigan State University (consulted: March 2009).
  37. Manley, K. (2002). The systems approach to innovation studies. Australasian Journal of Information Systems, 9(2), 94–102.Google Scholar
  38. Matthews, M. R. (1994). The role of history and philosophy of science. New York, USA: Routledge.Google Scholar
  39. Matthews, M. R. (1998). The nature of science and science teaching. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 981–999). Great Britain, UK: Kluger.Google Scholar
  40. Mestheme, E. (1970). Technical Change. New York: Mentor.Google Scholar
  41. Nelson, R. (Ed.). (1993). National innovation system. New York, USA: Oxford University Press.Google Scholar
  42. OECD. (1991). The nature of innovation and the evolution of the productive system. Technology and productivity: The challenge for economic policy (pp. 303–314). Paris, France: OECD.Google Scholar
  43. Paun, E. (1990) Assessing the influence of empirical knowledge on the acquisition of scientific concepts. In D. Layton III (Ed.), Innovations in science and technology education (pp. 99–109). UNESCO.Google Scholar
  44. Petroski, H. (1996). Harnessing steam. American Scientist, 84, 15–19.Google Scholar
  45. Pitt, J. C. (2000). Thinking about technology. Foundations of the philosophy of technology. New York, USA: Seven Bridge Press.Google Scholar
  46. Price, D. J. (1963). Little science, big science, 1st edn. Columbia University Press, NY. (Spanish version: Hacia una ciencia de las ciencias, Editorial Ariel, Barcelona, 1973).Google Scholar
  47. Santilli, H. (2008). Conocimientos Científico e Ingenieril desde los Laboratorios de Enseñanza, Memorias Noveno Simposio de Investigación en Educación en Física (SIEF 9), en CD, Asociación de Profesores de Física de Argentina (APFA) y F.C.E.I.yA., U. N. Rosario, pp. 1–13 ISBN 978-987-22880-4-4.Google Scholar
  48. Santilli, H., & Speltini, C. (2003). Los laboratorios de enseñanza de física desde una perspectiva histórica y social. Revista Argentina de Enseñanza de la Ingeniería, 4(6), 23–35.Google Scholar
  49. Scherer, F. M. (1965). Invention and innovation in the Watt-Boulton steam engine venture. Technology and Culture, 6(2), 165–187 (Spring 1965).Google Scholar
  50. Simon, H. (1969). The sciences of the artificial. MIT Press, Cambridge, MA, USA (Spanish version (1978), Las Ciencias de lo Artificial, Editorial ATE, Barcelona).Google Scholar
  51. Sproule, A. (1992). James Watt. Watford, Herts, UK: Exley Publications.Google Scholar
  52. Tala, S. (2009). Unified view of science and technology for education: Technoscience and technoscience education. Science & Education, 18(3–4), 275–298.CrossRefGoogle Scholar
  53. Thuillier, P. (1988). De Arquímedes a Einstein. Las caras ocultas de la invención científica, Alianza Editorial, Madrid, Spain (French version: D’Archimède à Einstein. Fayard, Paris, France (1988)).Google Scholar
  54. Vicenti, W. (1990). What engineers know and how they know it. Baltimore, USA: Johns Hopkins University Press.Google Scholar
  55. Waits, R. K. (2003). Edison’s vacuum technology patents. Journal of Vacuum Science and Technology, 21(4), 881–891, http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JVTAD6000021000004000881000001&idtype=cvips&gi.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Gabinete de Desarrollo de Metodologías de Enseñanza, Facultad de IngenieríaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations