Advertisement

Science & Education

, Volume 16, Issue 9–10, pp 883–920 | Cite as

Discovery in Science and in Teaching Science

  • Nahum Kipnis
Article

Abstract.

A proper presentation of scientific discoveries may allow science teachers to eliminate certain myths about the nature of science, which originate from an uncertainty among scholars about what constitutes a discovery. It is shown that a disagreement on this matter originates from a confusion of the act of discovery with response to it. It is suggested to separate these two concepts and also to distinguish the ‘scientific’ response from the ‘social’ one. The analysis is based on historical examples, primarily from the history of optics.

Keywords

discovery in science science teaching science-methodology science-philosophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Académie des Sciences de Paris: [1803], ‘Rapport fait à la Classe des Sciences Physique et Mathematique par Laplace, Coulomb, Hallé, Guiton, et Biot, sur les recherches, faites pendant l’an XI, relativement au Galvanisme’, Procès-verbaux des séances tenue depuis la foundation de l’Institut, III, 11–16, pp. 14–17Google Scholar
  2. Becquerel H. (1896) Sur les radiations émises par phosphorescence. Compte rendu des séances de l’académie des sciences 122(24 Feb.): 420–421Google Scholar
  3. Biot J.B., Pouillet C. (1816) Sur la diffraction de la lumière’. In: Biot J.B. (eds) Traité de physique expérimental et mathématique. Deterville, ParisGoogle Scholar
  4. Blackwell R. (1969) Discovery in the Physical Sciences. University of Notre Dame Press, Notre Dame, INGoogle Scholar
  5. Brandes, H.W.: 1830, ‘Inflexion des Lichtes’, Physikalisches Wörterbuch, Vol. 5, 2nd part, Leipzig, pp. 681–742 (p. 687)Google Scholar
  6. Brannigan A. (1981) The Social Basis of Scientific Discoveries. Cambridge University Press, CambridgeGoogle Scholar
  7. Briançon A. (1896) Épreuves photographiques obtenus dans l’obscuritÉ. Compte rendu des sÉances de l’acadÉmie des sciences 122:390Google Scholar
  8. Brush S.G. (1974) Should the History of Science Be Rated X?. Science 183:1164–1172CrossRefGoogle Scholar
  9. Buchwald J.Z. (1980) Experimental Investigations of Double Refraction from Huygens to Malus. Archive for History of Exact Sciences 21:311–373CrossRefGoogle Scholar
  10. Cajori F. (1896) Search for Solar X-ray on Pike’s Peak. American Journal of Science 2:289–290CrossRefGoogle Scholar
  11. Caneva K. (2001) The Form and Function of Scientific Discoveries: Dibner Library Lecture. Smithsonian Institution Libraries, Washington, DCGoogle Scholar
  12. Colson, R.: 1896, ‘Action du zinc sur la plaque photographique’, Compte rendu des séances de l’académie des sciences 123, 49–51Google Scholar
  13. De La Hire, P.: 1710, ‘Sur une espèce de talc qu’on trouve communèment proche de Paris audessous des bancs de Pierre de platre’, Memoires de l’Academie des Sciences de Paris, 341–352Google Scholar
  14. Devons S., Hartmann L. (1970) A History-of-Physics Laboratory. Physics Today 23(2):44–49CrossRefGoogle Scholar
  15. Dolley C.S., Egbert S. (1896) Röntgen rays present in sunlight. Science 3:357–358CrossRefGoogle Scholar
  16. Dubois, R.: 1896, ‘Les rayons X et les êtres vivants’, Compte rendus des séances de Société de la Biologie, 48, 384–385Google Scholar
  17. Erman, P.: 1807, ‘Beiträge über electrisch-geographische Polarität, permanente electrische Ladung, und magnetisch-chemische Wirkungen’, Annalen der Physik 26, 1–35; 121–145Google Scholar
  18. Fourier J. (1955) The Analytical Theory of Heat [1821]. Facsmile: Dover Publications, New YorkGoogle Scholar
  19. Frankel E. (1974) The Search for a Corpuscular Theory of Double Refraction: Malus, Laplace and the prize competition of 1808. Centaurus 18:223–245CrossRefGoogle Scholar
  20. Galdabini S., Rossi O. (1993) Using Historical Papers in Ordinary Physics Teaching at High School. Science & Education 2:239–242CrossRefGoogle Scholar
  21. Gohau G. (1980) Difficulties Inherent in a Pedagogy of Discovery in the Teaching of the Sciences. In: Grmek M.D., Cohen R.S., Cimino G. (eds) On Scientific Discovery. D. Reidel Publishing Company, Dordrecht, Boston, London, pp. 191–210Google Scholar
  22. Grimaldi, F.M.: 1966, Physico-mathesis de lumine, coloribus, et iride [1665], Facsimile: Dawsons of Pall Mall, LondonGoogle Scholar
  23. Hachette J.N.P. (1808) Lettre to the editors of the Annales de Chimie. Annales de Chimie et Physique 65:211–215Google Scholar
  24. Harris D., Taylor M. (1983) Discovery Learning in School Science: The Myth & the Reality. Journal of Curriculum Studies 15:277–289CrossRefGoogle Scholar
  25. Henry, Ch.: 1896, ‘Augmentation du rendement photographique des rayons Röntgen par le sulfure de zinc phosphorescent’, C.R. 122(10 Feb.), 312–314Google Scholar
  26. Hudson R.G. (2001) Discoveries, When and by Whom?. British Journal of Philosophy of Science 52:75–93CrossRefGoogle Scholar
  27. Hume K. (2001) Seeing Shades of Gray: Developing a Knowledge-Building Community Through Science. In: Wells G. (eds) Action, Talk and Text: Learning and Teaching through Inquiry. Teachers College Press, Teachers College, Columbia University, New York and London, pp. 99–117Google Scholar
  28. Huygens, Ch.: 1950, Treatise on Light [1690], 2nd edn, translated by S.P. Thompson, ChicagoGoogle Scholar
  29. Huygens, Ch.: 1888–1950, Oeuvres complètes publiées par la Société hollandaise des sciences, 22 vols, M. Nijhoff, La Haye, v. 9, p. 522Google Scholar
  30. Kauffman G.B. (1980) History in the Chemistry Curriculum. Journal of College Science Teaching 10:15–27Google Scholar
  31. Ker W.W. (1896) Shadow Pictures by Arc Light Rays. Electrical Engineer 21:309–310Google Scholar
  32. Kantorovich A. (1993) Scientific Discovery, Logic and Tinkering. State University of New York Press, Albany, NYGoogle Scholar
  33. Kipnis, N.: 1976, ‘K istorii izucheniya diffraktsii sveta v XVIII v [Study of diffraction of light in the 18th c (Russian)’, in Bogolyubov, A.N. (ed.), Mekhanika I fizika XVIII v [Mechanics and Physics in the 18th c], Nauka, Moscow, pp. 213–227Google Scholar
  34. Kipnis N. (1991) History of the Principle of Interference of Light. Birkhäuser Verlag, Basel, Boston, BerlinGoogle Scholar
  35. Kipnis N. (1992) Rediscovering Optics. BENA Press, MinneapolisGoogle Scholar
  36. Kipnis N. (1996) The “Historical–Investigative” Approach to Teaching Science. Science & Education 5:277–292CrossRefGoogle Scholar
  37. Kipnis N. (2000) The Window of Opportunity: Logic and Chance in Becquerel’s Discovery of Radioactivity. Physics in Perspective 2:63–99CrossRefGoogle Scholar
  38. Kipnis, N.: 2002, ‘From “β-rays” to “Electron”’ in Kragh, H., Vanpaemel, G. & Marage P. (eds.), Proceedings of the XXth International Congress of History of Science (Liege, 20–26 July 1997), Vol. XIV: History of Modern Physics, Brepols Publishers, Turnhout, Belgium, pp. 189–196Google Scholar
  39. Kipnis N. (2005) Chance in Science: The Discovery of Electromagnetism by H.C. Oersted. Science & Education 14:1–28CrossRefGoogle Scholar
  40. Kipnis, N. & Pogrebysskaya, E.: 1978, ‘Dve problemy fiziheskoj optiki na rubezhe XVIII-XIX vekov [Two Problems in Physical Optics at the Turn of the XIX century (Russian)], in Bogolyubov A.N. (ed.), Mekhanika I fizika vtoroy poloviny XVIII v [Mechanics and Physics in the second half of the 18th c], Nauka, Moscow, pp. 72–133Google Scholar
  41. Klein M. (1972) The Use and Abuse of Historical Teaching in Physics. In: Brush S., King A. (eds) History in the Teaching of Physics. University Press of New England, Hanover, NH, pp. 12–18Google Scholar
  42. Kuhn Th. (1970) The Structure of Scientific Revolutions, (Second Edition). University of Chicago Press, ChicagoGoogle Scholar
  43. Kuslan L. (1972) Teaching Children Science: An Inquiry Approach, (Second Edition). Wadsworth Pub. Co, Belmont, CAGoogle Scholar
  44. Lakatos, I.: 1970, ‘Falsification and the Methodology of Scientific Research Programmes’, in Lakatos, I. & Musgrave, A. (eds.), Criticism and the Growth of Knowledge, Cambridge University Press, Cambridge, pp. 91–196 (p. 118)Google Scholar
  45. Latchford, K.: 1975, ‘Thomas Young and the Evolution of the Interference Principle’, Unpublished PhD dissertation, London Imperial CollegeGoogle Scholar
  46. Lawrenz F., Kipnis N. (1990) Hands-on History of Physics. Journal of Science Teacher Education 1(3):54–59CrossRefGoogle Scholar
  47. Lawson A.E. (2002) What Does Galileos Discovery of Jupiters Moons Tell us About the Process of Scientific Discovery?. Science and Education 11:1–24CrossRefGoogle Scholar
  48. Lochhead J., Dufresne R. (1989) Helping Students Understand Difficult Science Concepts Through the Use of Dialogues with History. In: Herget D. (eds) History and Philosophy of Science in Science Education: Proceedings of the First International Conference. Science Education and Department of Philosophy Florida State University, Tallahassee, FL, pp. 221–229Google Scholar
  49. Maraldi, G.F.: 1723, ‘Diverses expériences d’optique,’ Histoires de l’Academie des Sciences avec les Mémoires de Mathématique et de Physique, Paris, Amsterdam, 1730, pp. 157–200Google Scholar
  50. Mayer R.E. (2004) Should there be a Three-Strikes Rule Against Pure Discovery Learning? The Case for Guided Methods of Instruction. American Psychologist 59(1):14–19CrossRefGoogle Scholar
  51. Merton R. (1996) On Social Structure and Science. University of Chicago Press, Chicago & LondonGoogle Scholar
  52. Muraoka H. (1896) Das Johannkäferlicht. Annalen der Physik 59:773–781Google Scholar
  53. Niewenglowski G.H. (1896) Sur la propriété qu’ont les radiations émises par les corps phosphorescents, de traverser certains corps opaques à la lumière solaire, et sur les expériences de M. G. Le Bon, sur la lumière noire. Compte rendu des séances de l’académie des sciences 122(17 Feb.): 385–386Google Scholar
  54. Newton I.: (1952) Opticks [1730]. Facsimile: Dover Publications, New YorkGoogle Scholar
  55. Oersted, H.C.: 1820, ‘Experiments on the Effect of a Current of Electricity on the Magnetic Needle’, Annals of Philosophy 16, 273–276, see also in H.C. Oersted Scientific Papers, Kirstine Meyer (ed.), 3 Vols (A.F. Host & Son, Copenhagen, 1920), pp. I, LXXXIX– XCIIIGoogle Scholar
  56. Oersted, H.C.: 1827, ‘Thermo-electricity [1827]’, in Oersted’s Scientific Papers, Vol II, pp. 351–398Google Scholar
  57. Ohm, G.S.: 1827, Die galvanisce Kette, mathematisch bearbeitet, T.H. Riemann, Berlin, Facsimile: 1969, Culture et Civilisation, BruxellesGoogle Scholar
  58. Papin, D.: 1966, ‘Letter of Papin to Huygens of November 22, 1690’, in Gerland, E., Leibnizens und Huygens’ Briefwechsel mit Papin [1881], Facsimile: DR. Martin Sändig oHG, Wiesbaden, pp. 161–162Google Scholar
  59. Prechtl, J.J.: 1821, ‘Ansichten über den Magnetismus und dessen Ableitung aus der Electricität’, Annalen der Physik, 67:81–90 (p. 81)Google Scholar
  60. Priestley, J.: 1772, The History and Present State of Discoveries Relating to Vision, Light, and Colours, J. Johnson, London, Facsimile: Kraus Reprint Co., Milwood, NJ, 1978, pp. 520–535Google Scholar
  61. Ritter, J.W.: 1804, ‘Expériences sur le magnétisme’, Journal de Physique 57, 406–409 (p. 406).Google Scholar
  62. Rowe M.B. (1973) Teaching Science as Continuous Inquiry. McGraw-Hill, New YorkGoogle Scholar
  63. Shilling, G.W.: 1770, ‘Sur les phénomenes de l’Anguille tremblante’, Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Berlin, 68–74Google Scholar
  64. Shulman L., Keislar E. (eds) (1966) Learning by Discovery: A Critical Appraisal. Rand McNally, ChicagoGoogle Scholar
  65. Stinner A., Teichmann J. (2003) Lord Kelvin and the Age-of-the-Earth Debate: A Dramatization. Science & Education 12:213–228CrossRefGoogle Scholar
  66. Thompson S. (1896) On Hyperphosphorescence. Philosophical Magazine 42:103–107Google Scholar
  67. Volta A. (1800) On the electricity excited by the mere contact of conducting substances of different kinds [in French]. Philosophical Transactions of the Royal Society of London 90(2):403–431CrossRefGoogle Scholar
  68. White H. (1969) Introduction to College Physics. Van Nostrand-Reinhold Co, New YorkGoogle Scholar
  69. Whittaker E. (1987) A History of the Theories of Aether and Electricity. v.I., Tomash Publishers/American Institute of Physics, New YorkGoogle Scholar
  70. Wollaston, W.H.: 1802, ‘On the Oblique Refraction of Iceland Crystal’, Philosophical Transactions of the Royal Society of London 92, 381–386Google Scholar
  71. Worrall, J.: 1976, ‘Thomas Young and the ‘Refutation’ of Newtonian Optics’, in Howson C. (ed.), Method and Appraisal in Physical Sciences, Cambridge University Press, CambridgeGoogle Scholar
  72. Young, Th.: 1800, ‘Outlines of Experiments and Inquiries Respecting Sound and Light’, Philosophical Transactions of the Royal Society of London 90, 106–150Google Scholar
  73. Young, Th.: 1802a, ‘The Bakerian Lecture: On the Theory of Light and Colours’, Philosophical Transactions of the Royal Society of London 92, 12–48Google Scholar
  74. Young, Th.: 1802b, ‘An Account of Some Cases of the Production of Colours, not hitherto Described’, Philosophical Transactions of the Royal Society of London 92, 387–397Google Scholar
  75. Young, Th.: 1804, ‘The Bakerian Lecture: Experiments and Calculations Relative to Physical Optics’, Philosophical Transactions of the Royal Society of London 94, 1–16Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.MinneapolisUnited States

Personalised recommendations