Science & Education

, Volume 15, Issue 5, pp 447–462 | Cite as

Mathematics in Physics Education: Scanning Historical Evolution of the Differential to Find a More Appropriate Model for Teaching Differential Calculus in Physics

  • Joaquín Martínez-Torregrosa
  • Rafael López-Gay
  • Albert Gras-Martí


Despite its frequent use, there is little understanding of the concept of differential among upper high school and undergraduate students of physics. As a first step to identify the origin of this situation and to revert it, we have done a historic and epistemological study aimed at clarifying the role and the meaning of the differential in physics and at improving curricular and teaching models in the sense of Gilbert et al. (Gilbert J.K., Boulter C., & Rutherford, M.: 1998a, International Journal of Science Education 20(1), 83–97, Gilbert J.K., Boulter C., & Rutherford, M.: 1998b, International Journal of Science Education 20(2), 187–203). We describe the contributions of Leibniz and Cauchy and stress their shortcomings, which are overcome by the alternative definition proposed by the French mathematician Fréchet, dating from early 20th century. As a result of this study, we answer to some fundamental questions related to a proper understanding of the differential in physics education (for 17–19 years old students).


High School 20th Century Historical Evolution Undergraduate Student Physic Education 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghadiuno, M.C.K. 1992‘Mathematics: History, Philosophy and Applications to Science’International Journal for Mathematical Education in Science and Technology23683690Google Scholar
  2. Aleksandrov, A.D.,  et al. 1956La Matemática: Su Contenido, Métodos y SignificadoAlianza UniversidadMadrid (7th edition, 1985).Google Scholar
  3. Alibert D., et al.: 1987, ‘Le Thème “Differentielles” Un Exemple de Coopération Maths-Physique dans la Recherche’, in Actes du Colloque du GRECO Didactique et Acquisition des Connaissances Scientifiques, Sêvres, La Pensée Sauvage, Grenoble, pp. 7–45.Google Scholar
  4. Artigue, M.: 1986, ‘The Notion of Differential for Undergraduate Students in Science’, in Proceedings of the Xth Annual Conference of the International Group for the Psychology of Mathematics Education, London, pp. 229–234.Google Scholar
  5. Artigue, M.: 1989, ‘Le Passage de La Différentielle Totale a la Notion D’application Linéaire Tangente’, in Procedures Différentielles dans les Enseignements de Mathematiques et de Physique au Niveau du Premier Cycle Universitaire (Annexe I), Université Paris 7, IREM et LDPES, Paris.Google Scholar
  6. Artigue, M. & Viennot, L.: 1987, ‘Some Aspects of Students’ Conceptions and Difficulties about Differentials’, in Second International Seminar Misconceptions and Educational Strategies in Science and Mathematics, Vol. III. Cornell University, Ithaca.Google Scholar
  7. Azcárate, C.: 1990, La Velocidad: Introducción al Concepto de Derivada. Tesis Doctoral, Universidad Autónoma de Barcelona. Abstract in Enseñanza de las Ciencias 9(2), 201–202.Google Scholar
  8. Cauchy, A.L.: 1821, Cours d’Analyse de L’École Royale Polytechnique (facsimil of the first edition), Sociedad Andaluza de Educación Matemática Thales, Sevilla, 1998.Google Scholar
  9. Cottrill, J.,  et al. 1996Understanding the Limit Concept: Beginning with a Coordinated Process SchemeJournal of Mathematical Behavior15167182CrossRefGoogle Scholar
  10. Cuenca, J.A.: 1986, ‘Iniciación al Análisis no Estándar (1a, 2a y 3a parte). Revista de la Sociedad Andaluza de Profesores de Matemáticas Thales 5, 34–48; 6, 42–51 and 7, 27–43.Google Scholar
  11. Del Castillo, F. 1980Análisis Matemático IIAlhambraMadridGoogle Scholar
  12. Dieudonné, J. 1960Fundamentos de Análisis ModernoRevertéBarcelonaGoogle Scholar
  13. Dunn, J.W., Barbanel, J. 2000One Model for an Integrated Math/Physics Course Focusing on Electricity and Magnetism and Related Calculus TopicsAmerican Journal of Physics68749757CrossRefGoogle Scholar
  14. Edwards, C.H. 1937The Historical Development of the CalculusSpringer-VerlagNew York1979.Google Scholar
  15. Eves, H. 1981Great Moments in Mathematics (After 1690)The Mathematical Association of AmericaWashington D.C Dolciani Mathematical Expositions 7.Google Scholar
  16. Ferrini-Mundy, J., Geuther Graham, K. 1991An Overview of the Calculus Curriculum Reform Effort: Issues for Learning, Teaching, and Curriculum DevelopmentThe American Mathematical Monthly98627635Google Scholar
  17. Ferrini-Mundy, J., Gaudard, M. 1992Secondary School Calculus: Preparation or Pitfall in the Study of College Calculus?Journal for Research in Mathematics Education235671Google Scholar
  18. Freudenthal, M. 1973Mathematics as an Educational TaskD. Reidel Publishing CompanyDordrecht-HollandGoogle Scholar
  19. Gilbert, J.K., Boulter, C., Rutherford, M. 1998aModels in Explanations, Part 1: Horses for Courses?International Journal of Science Education208397Google Scholar
  20. Gilbert, J.K., Boulter, C., Rutherford, M. 1998bModels in Explanations, Part 2: Whose Voice? Whose Ears?International Journal of Science Education20187203Google Scholar
  21. Gras Martí, A., López-Gay, R., Martínez-Torregrosa, J. & Torregrosa, G.: 2001, ‘On How to Best Introduce the Concept of Differential in Physics’, in First International Girep SeminarDeveloping Formal Thinking in Physics’, University of Udine, Italy.Google Scholar
  22. Gravemeijer, K., Dorman, M. 1999Context Problems in Realistic Mathematics Education: A Calculus Course as an ExampleEducational Studies in Mathematics39111129CrossRefGoogle Scholar
  23. Hallez, M.: 1989, ‘Les Ouvrages de Mathematiques pour L’enseignement (XIXème - XXème)’, in Procedures Différentielles dans les Enseignements de Mathematiques et de Physique au Niveau du Premier Cycle Universitaire (Annexe III), Université Paris 7, IREM et LDPES, Paris.Google Scholar
  24. Kleiner, I. 2001History of the Infinitely Small and the Infinitely Large in CalculusEducational Studies in Mathematics48137174CrossRefGoogle Scholar
  25. Kline, M.: 1972, El Pensamiento Matemático de la Antigüedad a Nuestros Días, Alianza Universidad, Madrid, 1992.Google Scholar
  26. Laugwitz, D. 1997aOn the Historical Development of Infinitesimal Mathematics. Part I: The Algoritmic Thinking of Leibniz and EulerThe American Mathematical Monthly104447455Google Scholar
  27. Laugwitz, D. 1997bOn the Historical Development of Infinitesimal Mathematics. Part II: The conceptual thinking of CauchyThe American Mathematical Monthly104654663Google Scholar
  28. Lauten, D., Graham, K., Ferrini-Mundy, J. 1994Student Understanding of Basic Calculus Concepts: Interaction with the Graphics CalculatorJournal of Mathematical Behavior13225237CrossRefGoogle Scholar
  29. Lavaly, A. 1990Do Students Find Physics Easier to Learn Without Mathematical Problems?Physics Education25202204CrossRefGoogle Scholar
  30. López-Gay, R.: 2001, La Introducción y Utilización del Concepto de Diferencial en la Enseñanza de la Física. Análisis de la Situación Actual y Propuesta para su Mejora. Unpublished Doctoral Thesis, Universidad Autónoma de Madrid.Google Scholar
  31. López-Gay, R., Martínez-Torregrosa, J., Gras Marti, J. 2001What Is The Meaning and Use of this Expression: dN=α·N·t2·dt?Pintó, R.Surinyacs, S. eds. Proceedings International Conference Physics Teacher Education Beyond 2000. Selected ContributionsElsevier EditionsParis233236 (ISBN.: 2-84299-312-8).Google Scholar
  32. López-Gay, R., Martínez Torregrosa, J. & Gras Marti, A.: 2002, Análisis de la Utilización y Comprensión del Cálculo Diferencial en la Enseñanza de la Física, in Aspectos didácticos de física y química. Educación abierta, 162, 113–157. Universidad de Zaragoza.Google Scholar
  33. Martin, D., Coleman, J. 1994Mathematics for Mature Student Acces to HE Courses in Physics: The Coventry PerspectivePhysics Education292022Google Scholar
  34. Martínez-Torregrosa, J., Doménech, J.L., Verdú, R. 1994‘Del derribo de Ideas al Levantamiento de Puentes: la Epistemología de la Ciencia como Criterio Organizador de la Enseñanza en las Ciencias Física y QuímicaRevista de Enseñanza de la Física72234Google Scholar
  35. Martínez Torregrosa, J., López-Gay, R., Gras-Martí, A., Torregrosa, G. 2002‘La Diferen- cial no es un Incremento Infinitesimal. Evolución del Concepto de Diferencial y su Clarificación en la Enseñanza de la FísicaEnseñanza de las Ciencias20271283Google Scholar
  36. Martínez Torregrosa, J. & López-Gay, R.: 2005, ‘Qué Hacen y Qué Entienden los Estudiantes y Profesores de Física Cuando Usan Expresiones Diferenciales’, Enseñanza de las Ciencias 23(3), (november 2005).Google Scholar
  37. Monk, M. 1994Mathematics in Physics Education: A Case of More Haste Less SpeedPhysics Education29209211CrossRefGoogle Scholar
  38. Nagy, P., Traub, R.E., MacRury, K., Klaiman, R. 1991High School Calculus: Comparing the Content of Assignments and TestsJournal for Research for Mathematics Education226975Google Scholar
  39. NCTM.: 2000, Principle and Standards for School Mathematics,
  40. Orton, A. 1983a‘Students’ Understanding of IntegrationEducational Studies in Mathematics14118Google Scholar
  41. Orton, A. 1983b‘Students’ Understanding of DifferentiationEducational Studies in Mathematics14235250Google Scholar
  42. Osborne, J., Simons, S., Collins, S. 2003Attitudes Towards Science: A Review of the Literature and Its ImplicationsInternational Journal of Science Education2510491079CrossRefGoogle Scholar
  43. Porter, M.K., Masingila, J.O. 2000Examining the Effects of Writing on Conceptual and Procedural Knowledge in CalculusEducational Studies in Mathematics42165177CrossRefGoogle Scholar
  44. Romero, L. & Serrano, J.M.: 1994, Desarrollo Histórico del Concepto de Límite. Un Ensayo de Aplicación del Análisis Filogenético a la Enseñanza. Servicio de Publicaciones de la Universidad de Murcia, Spain, 1997.Google Scholar
  45. Rossi, P.: 1997, El Nacimiento de la Ciencia Moderna en Europa, Crítica – Grijalbo Mondadori, Barcelona, 1998.Google Scholar
  46. Sánchez, C., Contreras, A. 1998Análisis de Manuales a través del Tratamiento Didáctico dado al Concepto Límite de una Función: Una Perspectiva desde la Noción de ObstáculoEnseñanza de las Ciencias167384Google Scholar
  47. Schneider, M. 1991Un Obstacle Epistémologique Soulevé par des “Découpages Infinis” des Surfaces et des SolidesRecherches en Didactique des Mathématiques11241294Google Scholar
  48. Schneider, M. 1992A Propos de L’apprentissage du Taux de Variation InstantaneEducational Studies in Mathematics23317350CrossRefGoogle Scholar
  49. Tall, D. 1985aUnderstanding the CalculusMathematics Teaching1104953Google Scholar
  50. Tall, D. 1985bThe Gradient of a GraphMathematics Teaching1114852Google Scholar
  51. Tall, D. 1985cTangents and the Leibniz NotationMathematics Teaching1134851Google Scholar
  52. Tall, D. 1986aA Graphical Approach to IntegrationMathematics Teaching1144851Google Scholar
  53. Tall, D. 1992Current Difficulties in the Teaching of Mathematical Analysis at University: An Essay Review of “Yet Another in Introduction to Analysis”ZDM243742Google Scholar
  54. Thompson, P.W. 1994Images of Rate and Operational Understanding of the Fundamental Theorem of CalculusEducational Studies in Mathematics26229274Google Scholar
  55. Thompson, P.W., Thompson, A. 1994Talking about Rates Conceptually. Part I: Teacher’s StruggleJournal for Research in Mathematics Education25279303Google Scholar
  56. Thompson, P.W., Thompson, A. 1996Talking about Rates Conceptually. Part II: Mathematical Knowledge for TeachingJournal for Research in Mathematics Education27224Google Scholar
  57. Turégano, P. 1998Del Área a la Integral. Un Estudio en el Contexto EducativoEnseñanza de las Ciencias16233249Google Scholar
  58. White, P., Mitchelmore, M. 1996Conceptual Knowledge in Introductory CalculusJournal for Research in Mathematics Education277995Google Scholar
  59. Williams, S. 1991Models of Limit Held by College Calculus StudentsJournal for Research in Mathematics Education22219236Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Joaquín Martínez-Torregrosa
    • 1
  • Rafael López-Gay
    • 2
  • Albert Gras-Martí
    • 3
  1. 1.Departamento de Didáctica General y Didácticas Específicas, Didáctica de las Ciencias Experimentales, Facultad de EducaciónUniversidad de AlicanteAlicanteSpain
  2. 2.Instituto de Enseñanza Secundaria “Nicolás Salmerón”AlmeríaSpain
  3. 3.Departamento de Física AplicadaUniversidad de AlicanteSpain

Personalised recommendations