Science & Education

, Volume 13, Issue 7–8, pp 717–731 | Cite as

Methodology and Politics: A Proposal to Teach the Structuring Ideas of the Philosophy of Science through the Pendulum

  • Agustín Adúriz-Bravo


This article refers to a framework to teach the philosophy of science to prospective and in-service science teachers. This framework includes two components: a list of the main schools of twentieth-century philosophy of science (called stages) and a list of their main theoretical ideas (called strands). In this paper, I show that two of these strands, labelled intervention/method and context/values, can be taught to science teachers using some of the instructional activities sketched in Michael Matthews’s Time for Science Education. I first explain the meaning of the two selected strands. Then I show how the pendulum can be used as a powerful organiser to address specific issues within the nature of science, as suggested by Matthews.


Science Education Science Teacher Science Curriculum Instructional Activity Science Teacher Education 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AAAS: 1989, Science for All Americans. Project 2061, Oxford University Press, New York.Google Scholar
  2. Abimbola, I.O.: 1983, ‘The Relevance of the “New” Philosophy of Science for the Science Curriculum’, School Science and Mathematics 83(3), 181–192.CrossRefGoogle Scholar
  3. AdÚriz-Bravo, A.: 2001a, ‘A Proposal to Teach the Abductive Argumentation Pattern Through Detective Novels’, in D. Psillos (ed.), Science Education Research in the Knowledge Based Society, Aristotle University, Thessaloniki, volume II, pp. 715–717.Google Scholar
  4. AdÚriz-Bravo, A.: 2001b, ‘A Theoretical Framework to Characterise and Assess Proposals to Teach the Philosophy of Science in the Context of Science Education’, in R. Evans, A. Møller Andersen & H. Sorensen (eds.), Bridging Research Methodology and Research Aims, Danmarks Pædagogiske Universitet, Copenhagen, pp. 24–34.Google Scholar
  5. AdÚriz-Bravo, A.: 2001c, Integración de la Epistemología en la Formación del Profesorado de Ciencias, Universitat Autònoma de Barcelona, Bellaterra.Google Scholar
  6. AdÚriz-Bravo, A.: 2002a, ‘Aprender sobre el Pensamiento Científico en el Aula de Ciencias: Una Propuesta para Usar Novelas Policiacas’, Alambique 31, 105–111.Google Scholar
  7. AdÚriz-Bravo, A.: 2002b, ‘Un Modelo para Introducir la Naturaleza de la Ciencia en la Formación de los Profesores de Ciencias’, Pensamiento Educativo 30, 315–330.Google Scholar
  8. AdÚriz-Bravo, A. & Izquierdo, M.: 2001, ‘Philosophy of Science in Science Teacher Education.Rationale and Practical Proposals’, in Proceedings of the 26th ATEE Annual Conference, on line,,_izquierdo_RDC_2.docGoogle Scholar
  9. AdÚriz-Bravo, A., Izquierdo, M. & Estany, A.: 2001, ‘A Characterisation of Practical Proposals to Teach the Philosophy of Science to Prospective Science Teachers’, in N. Valanides (ed.), Science and Technology Education: Preparing Future Citizens, University of Cyprus, Paralimni, Volume I, pp. 37–47.Google Scholar
  10. AdÚriz-Bravo, A., Izquierdo, M. & Estany, A.: 2002, ‘Una Propuesta para Estructurar la Enseñanza de la Filosofía de la Ciencia Para el Profesorado de Ciencias en Formación’, Enseñanza de las Ciencias 20(3), 465–476.Google Scholar
  11. Brush, S.: 1974, ‘Should the History of Science Be Rated X?’, Science 183, 1164–1172.CrossRefGoogle Scholar
  12. Cleminson, A.: 1990, ‘Establishing an Epistemological Base for Science Teaching in the Light of Contemporary Notions of the Nature of Science and of How Children Learn Science’, Journal of Research in Science Teaching 27(5), 429–445.CrossRefGoogle Scholar
  13. Cobern, W. & Loving, C.: 2003, ‘In Defense of Realism: It Really Is Commonsense’, in W. McComas (ed.), Proceedings of the Sixth IHPST Conference, CD-ROM, IHPST Group, Denver, 031.Google Scholar
  14. de Castro Moreira, I.: 2001, ‘Comentário Sobre o Artigo Metodologia e Política em Ciência: O Destino da Proposta de Huygens de 1673 Para Adoção do Pêndulo de Segundos Como un Padrão Internacional de Comprimento e Algumas Sugestões Educacionais, de Michael Matthews’, Caderno Catarinense de Ensino de Física 19(1), electronic version.Google Scholar
  15. Driver, R., Leach, J., Millar, R. & Scott, P.: 1996, Young People’s Images of Science, Open University Press, Buckingham.Google Scholar
  16. Duschl, R.: 1990, Restructuring Science Education. The Importance of Theories and Their Development, Teachers College Press, New York.Google Scholar
  17. Estany, A.: 1990, Modelos de Cambio Científico, Crítica, Barcelona.Google Scholar
  18. Estany, A.: 1993, Introducción a la Filosofía de la Ciencia, Crítica, Barcelona.Google Scholar
  19. Fried, M.: 2001, ‘Can Mathematics Education and History of Mathematics Coexist?’, Science & Education 10(4), 391–408.CrossRefGoogle Scholar
  20. Giere, R.: 1988, Explaining Science. A Cognitive Approach, University of Minnesota Press, Minneapolis.Google Scholar
  21. Giere, R.: 1999, ‘Del Realismo Constructivo al Realismo Perspectivo’, Enseñanza de las Ciencias, extra issue, 9–13.Google Scholar
  22. Gil-Pérez, D.: 1993, ‘Contribución de la Historia y de la Filosofía de las Ciencias al Desarrollo de un Modelo de Enseñanza/Aprendizaje como Investigación’, Enseñanza de las Ciencias 12(2), 154–164.Google Scholar
  23. Good, R. & Shymansky, J.: 2001, ‘Nature-of-Science Literacy in Benchmarks and Standards: Post-Modern/ Relativist or Modern/Realist?’, Science & Education 10(1&2), 173–185.CrossRefGoogle Scholar
  24. Hanson, N.R.: 1958, Patterns of Discovery: An Inquiry Into the Conceptual Foundations of Science, Cambridge University Press, Cambridge.Google Scholar
  25. Hempel, C.: 1966, The Philosophy of Natural Science, Prentice Hall, Englewood Cliffs.Google Scholar
  26. Hodson, D.: 1988, ‘Toward a Philosophically More Valid Science Curriculum’, Science Education 72(1), 19–40.CrossRefGoogle Scholar
  27. Irwin, A.: 2000, ‘Historical Case Studies: Teaching the Nature of Science in Context’, Science Education 84(1), 5–26.CrossRefGoogle Scholar
  28. Izquierdo, M.: 2000, ‘Fundamentos Epistemológicos’, in F.J. Perales and P. Cañal (eds.), Didáctica de las Ciencias Experimentales. Teoría y Práctica de la Enseñanza de las Ciencias, Marfil, Alcoy, pp. 35–64.Google Scholar
  29. Izquierdo, M. & AdÚriz-Bravo, A.: 2003, ‘Epistemological Foundations of School Science’, Science & Education 12(1), 27–43.CrossRefGoogle Scholar
  30. Jiménez Aleixandre, M.P.: 1996, Dubidar para Aprender, Edicións Xeráis, Vigo.Google Scholar
  31. Leach, J.: 2001, ‘Epistemological Perspectives in Science Education Research’, in D. Psillos (ed.), Science Education Research in the Knowledge Based Society, Aristotle University, Thessaloniki, volume I, pp. 13–15.Google Scholar
  32. Lombardi, O.: 1997, ‘La Pertinencia de la Historia en la Enseñanza de Ciencias: Argumentos y Contraargumentos’, Enseñanza de las Ciencias 15(3), 343–349.Google Scholar
  33. Matthews, M. (ed.): 1991, History, Philosophy and Science Teaching: Selected Readings, OISE Press, Toronto.Google Scholar
  34. Matthews, M.: 1994, Science Teaching: The Role of History and Philosophy of Science, Routledge, New York.Google Scholar
  35. Matthews, M.: 1997, ‘James T. Robinson’s Account of the Philosophy of Science and Science Teaching: Some Lessons for Today from the 1960s’, Science Education 81(3), 295–315.CrossRefGoogle Scholar
  36. Matthews, M.: 2000, Time for Science Education: How Teaching the History and Philosophy of Pendulum Motion can Contribute to Science Literacy, Plenum Publishers, New York.Google Scholar
  37. Matthews, M.: 2001, ‘Methodology and Politics in Science: The Fate of Huygens’ 1673 Proposal of the Seconds Pendulum as an International Standard of Length and Some Educational Suggestions’, Science & Education 10(1&2), 119–135.CrossRefGoogle Scholar
  38. McComas, W. (ed.): 1998, The Nature of Science in Science Education. Rationales and Strategies, Kluwer, Dordrecht.Google Scholar
  39. Mellado, V. & Carracedo, D.: 1993, ‘Contribuciones de la Filosofía de la Ciencia a la Didáctica de las Ciencias’, Enseñanza de las Ciencias 11(3), 331–339.Google Scholar
  40. Millar, R. & Osborne, J.: 1998, Beyond 2000: Science Education for the Future, King’s College, London.Google Scholar
  41. NRC (National Research Council): 1996, National Science Education Standards, National Academy Press, Washington.Google Scholar
  42. Nussbaum, J.: 1983, ‘Classroom Conceptual Change: The Lessons to be Learned from the History of Science’, in H. Helm & J. Novak (eds.), Misconceptions in Science and Mathematics, Cornell University, Ithaca.Google Scholar
  43. Osborne, J.: 1996, ‘Beyond Constructivism’, Science Education 80(1), 53–82.CrossRefGoogle Scholar
  44. Popper, K.: 1959, The Logic of Scientific Discovery, Basic Books, New York (German original edition of 1934).Google Scholar
  45. Samaja, J.: 1994, Epistemología y Metodología. Elementos Para una Teoría de la Investigación Científica, Eudeba, Buenos Aires.Google Scholar
  46. Sanmartí, N. & Izquierdo, M.: 1997, ‘Reflexiones en Torno a un Modelo de Ciencia Escolar’, Investigación en la Escuela 32, 51–62.Google Scholar
  47. Seroglou, F. & Koumaras, P.: 2001, ‘The Contribution of the History of Physics in Physics Education: A Review’, Science & Education 10(1&2), 153–172.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Agustín Adúriz-Bravo
    • 1
  1. 1.Departament de Didáctica de les Matemátiques i de les Ciéncies ExperimentalsUniversitat Autónoma de BarcelonaBellaterraEspaña/Spain

Personalised recommendations