Russian Journal of Plant Physiology

, Volume 52, Issue 5, pp 664–667 | Cite as

The Effect of Tobacco Plant Transformation with a Gene for Acyl-Lipid Δ9-Desaturase from Synechococcus vulcanus on Plant Chilling Tolerance

  • V. N. Popov
  • I. V. Orlova
  • N. V. Kipaikina
  • T. S. Serebriiskaya
  • N. V. Merkulova
  • A. M. Nosov
  • T. I. Trunova
  • V. D. Tsydendambaev
  • D. A. Los


Tobacco plants with the introduced desC gene for acyl-lipid Δ9-desaturase from the thermophilic cyanobacterium Synechococcus vulcanus were cultivated on agar-solidified Murashige and Skoog nutrient medium supplemented with ferulic acid and antibiotics at 22°C and a 16-h photoperiod. Control plants were transformed with an empty pGA482 vector. The analysis of fatty acids (FAs) showed that, in transgenic plants, the level of 16:0 and 18:0 FAs decreased substantially, whereas the levels of di- and trienoic FAs increased. Transformed plants were more cold-tolerant. The tolerance to chilling was evaluated from electrolyte leakage from tissues damaged by cold treatments and from the accumulation of a product of lipid peroxidation, malondialdehyde. It was concluded that acyl-lipid Δ9-desaturase was actively expressed in transgenic tobacco plants and converted stearic acid into oleic acid, thus producing a substrate for further synthesis of di- and trienoic FAs. An increased proportion of polyunsaturated FAs in membrane lipids resulted in improved tobacco plant tolerance to chilling.

Key words

Nicotiana tabacum transgenic plants acyl-lipid desaturase fatty acids chilling tolerance 



acyl-carrying protein


antioxidant system


fatty acid




peroxidation of lipids


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleksandrov, V.Ya., Kletki, makromolekuly i temperatura, Leningrad: Nauka, 1975. Translated under the title Cells, Molecules, and Temperature, Heidelberg: Springer-Verlag, 1977.Google Scholar
  2. 2.
    Shayakhmetova, I.Sh., Trunova, T.I., Tsydendambaev, V.D., and Vereshchagin, A.G., The Role of Cell Membrane Lipids in Cryohardening of Winter Wheat Leaves and Crowns, Fiziol. Rast. (Moscow), 1990, vol. 37, pp. 1186–1196 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  3. 3.
    Novitskaya, G.V., Sal'nikova, E.B., and Suvorova, T.A., Hardening-Induced Changes in Unsaturated Fatty Acids of Winter and Spring Wheat Lipids, Fiziol. Biokh. Kul't. Rast., 1990, vol. 22, pp. 257–264.Google Scholar
  4. 4.
    Lions, S.M., Chilling Injury in Plants, Annu. Rev. Plant Physiol., 1973, vol. 24, pp. 445–466.CrossRefGoogle Scholar
  5. 5.
    Novitskaya, G.V., Astakhova, N.V., Suvorova, T.A., and Trunova, T.I., The Role of the Membrane Lipid Component in the Chilling Tolerance of Cucumber Plants, Fiziol. Rast. (Moscow), 1999, vol. 46, pp. 618–625 (Russ. J. Plant Physiol., Engl. Transl., pp. 537–543).Google Scholar
  6. 6.
    Wright, M. and Simon, E.W., Chilling Injury of Cucumber Leaves, J. Exp. Bot., 1973, vol. 24, pp. 400–410.Google Scholar
  7. 7.
    Los, D.A. and Murata, N., Structure and Expression of Fatty Acid Desaturases, Biochim. Biophys. Acta, 1998, vol. 1394, pp. 3–15.PubMedGoogle Scholar
  8. 8.
    Fukuchi-Mizutani, M., Savin, K., Cornish, E., Tanaka, Y., Ashikari, T., Kusumi, T., and Murata, N., Senescence-Induced Expression of a Homologue of Δ9 Desaturase in Rose Petals, Plant Mol. Biol., 1995, vol. 29, pp. 627–635.CrossRefPubMedGoogle Scholar
  9. 9.
    Fukuchi-Mizutani, M., Tasaka, Y., Tanaka, Y., Ashikari, T., Kusumi, T., and Murata, N., Characterization of Δ9 Acyl-Lipid Desaturase Homologues from Arabidopsis thaliana, Plant Cell Physiol., 1998, vol. 39, pp. 247–253.PubMedGoogle Scholar
  10. 10.
    Orlova, I.V., Serebriiskaya, T.S., Popov, V.N., Merkulova, N.V., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D., and Los, D.A., Transformation of Tobacco with a Gene for the Thermophilic Acyl-Lipid Desaturase Enhances the Chilling Tolerance of Plants, Plant Cell Physiol., 2003, vol. 44, pp. 447–450.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhukov, A.V. and Vereshchagin, A.G., Modern Methods for Extraction, Purification, and Preliminary Fractionating of Plant Polar Lipids, Fiziol. Rast. (Moscow), 1980, vol. 27, pp. 171–188 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  12. 12.
    Tsydendambaev, V.D. and Vereshchagin, A.G., Sugar-Beet Root Lipids as Related to the Function of Sugar Accumulation: 1. Fatty Acid Composition of Lipids in the Quiescent Center Parenchyma, Fiziol. Rast. (Moscow), 1980, vol. 27, pp. 619–625 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  13. 13.
    Hepburn, H.A., Naylor, F.L., and Strokes, D.I., Electrolyte Leakage from Winter Barley Tissue as Indicator of Winterhardiness, Ann. Appl. Biol., 1986, vol. 108, pp. 164–165.Google Scholar
  14. 14.
    Zhirov, V.K., Merzlyak, M.N., and Kuznetsov, L.V., Membrane Lipid Peroxidation in Cold Resistant Plants Damaged by Below-Zero Temperatures, Fiziol. Rast. (Moscow), 1982, vol. 29, pp. 1045–1052 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  15. 15.
    Lukatkin, A.S. and Golovanova, V.S., The Extent of Lipid Peroxidation in the Chilled Leaves of Heat-Loving Plants, Fiziol. Rast. (Moscow), 1988, vol. 35, pp. 773–780 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  16. 16.
    Dospekhov, B.A., Metodika opytnogo dela (Strategy of Experiment), Moscow: Kolos, 1977.Google Scholar
  17. 17.
    Kiseleva, L.L., Horvath, L., Vigh, L., and Los, D.A., Temperature-Induced Specific Lipid Desaturation in the Thermophilic Cyanobacterium Synechococcus vulcanus, FEMS Microbiol. Lett., 1999, vol. 175, pp. 179–183.CrossRefGoogle Scholar
  18. 18.
    Kiseleva, L.L., Serebriiskaya, T.S., Horvath, L., Vigh, L., Lyukevich, A.A., and Los, D.A., Expression of the Gene for the Δ9 Acyl-Lipid Desaturase in the Thermophilic Cyanobacterium, J. Mol. Microbiol. Biotechnol., 2000, vol. 2, pp. 331–338.PubMedGoogle Scholar
  19. 19.
    Baraboi, V.A., Stress Mechanisms and Lipid Peroxidation, Usp. Sovrem. Biol., 1991, vol. 111, pp. 923–931.Google Scholar
  20. 20.
    Merzlyak, M.N., Aktivirovannyi kislorod i okislitel'nye protsessy v membranakh rastitel'noi kletki (Activated Oxygen and Oxidative Processes in Plant Cell Membranes), Itogi Nauki i Tekhniki, Ser. Fiziol. Rast., 1989, vol. 6.Google Scholar
  21. 21.
    Ishizaki-Nishizawa, O., Fujii, T., Azuma, M., Sekiguchi, K., Murata, N., Ohtani, T., and Toguri, T., Low-Temperature Resistance of Higher Plants Is Significantly Enhanced by a Nonspecific Cyanobacterial Desaturase, Nat. Biotechnol., 1996, vol. 14, pp. 1003–1006.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • V. N. Popov
    • 1
  • I. V. Orlova
    • 1
  • N. V. Kipaikina
    • 1
  • T. S. Serebriiskaya
    • 1
  • N. V. Merkulova
    • 1
  • A. M. Nosov
    • 1
  • T. I. Trunova
    • 1
  • V. D. Tsydendambaev
    • 1
  • D. A. Los
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations