Advertisement

Russian Journal of Plant Physiology

, Volume 52, Issue 4, pp 454–458 | Cite as

Decline in the Primary Productivity of Northwestern European Forests as a Consequence of Climate Aridization

  • P. Yu. Voronin
  • P. V. Konovalov
  • V. K. Bolondinskii
  • L. K. Kaipiainen
  • Z.-J. Mao
Article
  • 27 Downloads

Abstract

Average annual age-dependent changes of carbon accumulation in the stemwood of major forest species (pine, spruce, and birch) of the taiga zone of the northwestern European Russia (Karelia) were analyzed. The changes in carbon accumulation were assessed by comparing carbon reserves in tree stands of various ages. Net primary productivity of photosynthesis (NPP) and the proportionality coefficient between respiratory decarboxylation and carbon reserves in wood were calculated. NPP clearly decreased with increasing climate aridization (aridity index). However, the time of the attainment of climax state by a stand did not depend on the latitudinal climate gradient. Hence, only the size of heterotrophic part of phytomass determines annual carbon losses in northern-taiga stands. It is concluded that the climate dependency of the long-term carbon storage in the phytomass of boreal forests is mainly determined by the climate effect on photosynthetic carbon sequestration.

Key words

Net primary photosynthetic production photosynthesis respiration climate aridization northern taiga 

Abbreviation

NPP

net primary photosynthetic production

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Isaev, A.S., Korovin, G.N., Sukhikh, V.I., Titov, S.P., Utkin, A.I., Golub, A.A., Zamolodchikov, D.G., and Pryazhnikov, A.A., Ekologicheskie problemy pogloshcheniya uglekislogo gaza posredstvom lesovosstanovleniya i lesorazvedeniya v Rossii (Ecological Problems of Carbon Dioxide Assimilation via Reforrestation and Afforrestation in Russia), Moscow: Tsentr Ekol. Politiki, 1995.Google Scholar
  2. 2.
    Nichiporovich, A.A., Theory of Plant Photosynthetic Productivity, Teoreticheskie osnovy povysheniya produktivnosti rastenii (Theoretical Basics of Improved Plant Productivity), Itogi Nauki Tekh., Ser. Fiziol. Rast., 1977, vol. 3, pp. 11–54.Google Scholar
  3. 3.
    Tsel’niker, Yu.L. and Malkina, I.S., Chlorophyll Index as an Indicator of the Annual Carbon Accumulation in Forrest Stands, Fiziol. Rast. (Moscow), 1994, vol. 41, pp. 325–330 (Russ. J. Plant Physiol., Engl. Transl., pp. 281–285).Google Scholar
  4. 4.
    Golovko, T.K., Dykhanie rastenii (Plant Respiration), St. Petersburg: Nauka, 1999.Google Scholar
  5. 5.
    Tsel’niker, Yu.L. and Malkina, I.S., Respiration of Trunks and Branches, Rost i gazoobmen CO 2 u lesnykh derev’ev (The Growth and CO2 Exchange in Forest Trees), Utkin, A.I. and Tsel’niker, Yu.L., Eds., Moscow: Nauka, 1993, pp. 129–161.Google Scholar
  6. 6.
    Fensom, D.S., Thompson, R.G., and Caldwell, C.D., Tandem Moving Pressure Wave Mechanism for Phloem Translocation, Fiziol. Rast. (Moscow), 1994, vol. 41, pp. 135–148 (Russ. J. Plant Physiol., Engl. Transl., pp. 118–130).Google Scholar
  7. 7.
    Voronin, P.Yu., Kaipiainen, L.K., Bolondinskii, V.K., Konovalov, P.V., Khein, Kh.Ya., and Mokronosov, A.T., Involvement of Exported Photosynthetic Products in the CO2 Exchange of the Skeletal Shoots of Pine, Fiziol. Rast. (Moscow), 2001, vol. 48, pp. 172–176 (Russ. J. Plant Physiol., Engl. Transl., pp. 143–147).Google Scholar
  8. 8.
    Zabuga, G.A., Zabuga, V.F., and Soldatov, S.V., The Effect of Crown Photosynthetic Activity on the Radial Growth of Pinus sylvestris, Ekologo-fiziologicheskie issledovaniya fotosinteza i vodnogo rezhima rastenii v polevykh usloviyakh (Ecological and Physiological Study of Photosynthesis and Water Regime under Field Conditions), Salyaev, R.K., Ed., Irkutsk: Sibir. Otd. Akad. Nauk SSSR, 1982, pp. 71–74.Google Scholar
  9. 9.
    Zabuga, V.F. and Zabuga, G.A., Interrelations of Respiration and Rapid Growth of Scots Pine, Fiziol. Rast. (Moscow), 1985, vol. 32, pp. 942–947 (Sov. Plant Physiol., Engl. Transl.).Google Scholar
  10. 10.
    Zagirova, S.V. and Kuzin, S.N., Cambial Activity and CO2 Exchange in Pinus sylvestris L., Fiziol. Rast. (Moscow), 1998, vol. 45, pp. 778–783 (Russ. J. Plant Physiol., Engl. Transl., pp. 633–638).Google Scholar
  11. 11.
    Monserud, R.A., Tchebakova, N.M., Kolchugina, T.P., and Denissenko, O.V., Change in Siberian Phytomass Predicted for Global Warming, Silva Fennica, 1996, vol. 30, pp. 185–200.Google Scholar
  12. 12.
    Tooming, Kh.G. and Kallis, A., Calculation of the Productivity of Plant Canopy, Solnechnaya radiatsiya i produktivnost’ rastitel’nogo pokrova (Solar Radiation and Productivity of Plant Canopy), Ross, Yu. et al., Eds., Tartu: Akad. Nauk EstSSR, 1972, pp. 5–121.Google Scholar
  13. 13.
    Kobak, K.I., Bioticheskie komponenty uglerodnogo tsikla (Biotic Components of the Carbon Cycle), Leningrad: Gidrometeoizdat, 1988.Google Scholar
  14. 14.
    Isaev, A.S., Korovin, G.N., Utkin, A.I., Pryazhnikov, A.A., and Zamolodchikov, D.G., Evaluation of Stock and Annual Increment of Carbon in Phytomass of Woody Ecosystems of Russia, Lesovedenie, 1993, no. 5, pp. 3–10.Google Scholar
  15. 15.
    Voronin, P.Yu., Konovalov, P.V., Lukyanovich, V.I., Bolondinskii, V.K., and Kaipiainen, L.K., Object-Directed Approach ECOMAP: A Method to Graphic Render of Russian Territory Photosynthesis, Carbon Stock Data Base, Photosynthesis: From Light to Biosphere, Mathis, P., Ed., Dordrecht: Kluwer, 1995, vol. 5, pp. 1013–1016.Google Scholar
  16. 16.
    Voronin, P.Yu., Efimtsev, E.I., Vasiliev, A.A., Vatkovskii, O.S., and Mokronosov, A.T., Projective Plane Chlorophyll Content and the Biological Diversity of Vegetation in the Main Geobotanic Zones of Russia, Fiziol. Rast. (Moscow), 1995, vol. 42, pp. 295–302 (Russ. J. Plant Physiol., Engl. Transl., pp. 262–270).Google Scholar
  17. 17.
    Bobkova, K.S. and Torlopova, N.V., Biological Productivity of Spruce and Pine Forests, Bioproduktsionnyi protsess v lesnykh ekosistemakh Severa (Productivity of the Forests of Northern Region), Bobkova, K.S. and Galenko, E.P., Eds., St. Petersburg: Nauka, 2001.Google Scholar
  18. 18.
    Parnik, T. and Keerberg, O., Decarboxylation of Primary and End Products of Photosynthesis at Different Oxygen Concentrations, J. Exp. Bot., 1995, vol. 46, pp. 1439–1447.Google Scholar
  19. 19.
    The Encyclopedia of Earth Sciences, vol. 11, The Encyclopedia of Climatology, Oliver, J.E. and Fairbridge, Rh.W., Eds., New York: van Nostrand Reinhold, 1987.Google Scholar
  20. 20.
    Shapaeva, E.S. and Lebedev, I.A., Agroklimaticheskii spravochnik po Karel’skoi ASSR (A Handbook of Agroclimatology in Karelia), Leningrad: Gidrometeorologicheskoe izd-vo, 1959.Google Scholar
  21. 21.
    Voronin, P.Yu., Konovalov, P.V., and Mao, Zijun, Photosynthesis Limits Carbon Sequestering in the Taiga Zone of Northeastern Europe, Fiziol. Rast. (Moscow), 2003, vol. 50, pp. 118–122 (Russ. J. Plant Physiol., Engl. Transl., pp. 108–112).Google Scholar
  22. 22.
    Bobkova, K.S., Biologicheskaya produktivnost’ khvoinykh lesov Evropeiskogo severo-vostoka (Biological Productivity of Coniferous Forests in Northeastern European Russia), Leningrad: Nauka, 1987.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • P. Yu. Voronin
    • 1
  • P. V. Konovalov
    • 1
  • V. K. Bolondinskii
    • 2
  • L. K. Kaipiainen
    • 2
  • Z.-J. Mao
    • 3
  1. 1.Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Forestry, Karelian Research CenterRussian Academy of SciencesPetrozavodsk, KareliaRussia
  3. 3.Key Laboratory of Forest Plant Ecology, Ministry of Education of ChinaNortheast Forestry UniversityHarbinChina

Personalised recommendations