Russian Journal of Plant Physiology

, Volume 52, Issue 1, pp 112–126 | Cite as

Physiological and biochemical aspects and molecular mechanisms of plant adaptation to the elevated concentration of atmospheric CO2

  • A. K. Romanova


The review of publications concerning the impact of increasing CO2 concentration in the Earth’s atmosphere (Ca) on higher terrestrial plants. The physiological changes in plants induced by increasing Ca, including growth and biochemical composition, the characteristics of photosynthesis and respiration, as well as the molecular mechanisms of the regulation of the activity of most important biosynthetic enzymes at early and late stages of the exposure to elevated Ca are under consideration. Various concepts of metabolic regulation during acclimation to increasing CO2 concentration are critically reviewed. The pathways of possible involvement of carbonic anhydrase-mediated systems of CO2 transport and concentration during C3 photosynthesis of higher plants, the metabolic and signal mechanisms of photosynthesis inhibition by carbohydrates and the role of ethylene at elevated Ca are presented. The effect of elevated Ca on plant development and source-sink relations, as well as its interaction with other environmental factors, such as mineral, primarily nitrogen nutrition, light, temperature, and water regime, are discussed in with the context of potential forecasting of the consequences of increase in Ca and temperature for the activities of various higher plant forms in the rapidly changing climate.


higher plants CO2 concentration in atmosphere development growth photosynthesis enzymes feedback signaling system nitrogen nutrition interaction of environmental factors 



CO2 concentration in air


Rubisco activase


soluble carbonic anhydrase


sucrose phosphate synthase


photosynthetic CO2 exchange rate


photosystems I and II

Rd and Rl

respiration in darkness and in light respectively


roots/shoots weight ratio


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gifford, R.M. 1982Global Photosynthesis in Relation to Our Food and Energy NeedsGovindjii,  eds. Photosynthesis Development, Carbon Metabolism, and Plant ProductivityAcademicNew York459495Google Scholar
  2. 2.
    Watson, R., Rodhe, H., Oescheger, H., Siegenthaler, U.O.,  et al. 1990Greenhouse Gases and AerosolsHoughton, J.T. eds. Climate Change: The Scientific AssessmentCambridge Univ. PressCambridge140Google Scholar
  3. 3.
    Bowes, G. 1991Growth at Elevated CO2: Photosynthetic Responses Mediated through RubiscoPlant Cell Environ.14795806Google Scholar
  4. 4.
    Stitt, M. 1991Rising CO2 Levels and Their Potential Significance for Carbon Flow in Photosynthetic CellsPlant Cell Environ.14741762Google Scholar
  5. 5.
    Drake, B.G., Gonzàles-Meler, M.A., Long, S.P. 1997More Efficient Plants: A Consequence of Rising Atmospheric CO2?Annu. Rev. Plant Physiol. Plant Mol. Biol.48609639Google Scholar
  6. 6.
    Cure, J.D., Adcock, B. 1986Crop Response to Carbon Dioxide Doubling: A Literature SurveyAgric. Forest Meteorol.38127145Google Scholar
  7. 7.
    Gulyaev, B.I. 1986Influence of CO2 Concentrations on Photosynthesis, Growth, and Productivity of PlantsFiziol. Biokh. Kul’t. Rast.18574591Google Scholar
  8. 8.
    Kimball, B.A. 1989Carbon Dioxide and Agriculture Yield: Assemblance and Analysis of 430 Prior ObservationsAgron. J.75779788Google Scholar
  9. 9.
    Farrar, J.F., Williams, M.L. 1991The Effects of Increased Atmospheric Carbon Dioxide and Temperature on Carbon Partitioning, Source-Sink Relations, and RespirationPlant Cell Environ.14819830Google Scholar
  10. 10.
    Bowes, G. 1993Facing the Inevitable: Plants and Increasing Atmospheric CO2 LevelsAnnu. Rev. Plant Physiol. Plant Mol. Biol.44309332Google Scholar
  11. 11.
    Urban, O. 2003Physiological Impacts of Elevated CO2 Concentrations Ranging from Molecular to Whole Plant ResponsePhotosynthetica41920Google Scholar
  12. 12.
    Ainsworth, E.A., Davey, P.A., Bernacchi, C.J., Dermody, O.C., Heaton, E.A., Moore, D.J., Morgan, P.D., Naidu, S.L., Ra, H.-Sh.Y., Chu, X.G., Curtis, S.P., Long, S.P. 2002A Meta-Analysis of Elevated [CO2] Effects on Soybean (Glycine max) Physiology, Growth and YieldGlobal Change Biol.8695709Google Scholar
  13. 13.
    Seneweera, S., Aben, S.K., Basra, A.S., Jones, B., Conroy, J.P. 2003Involvement of Ethylene in the Morphological and Developmental Response of Rice to Elevated Atmospheric CO2 ConcentrationsPlant Growth Regul.39143153Google Scholar
  14. 14.
    Andreeva, T.F., Strogonova, L.E., Stepanenko, S.Yu., Maevskaya, S.N., Protasova, N.N., Murashov, I.N. 1979Dependence of Activity of the Photosynthetic Apparatus and Growth on Light Intensity and CO2 Concentration under Their Long-Time ActionFiziol. Rast.2611561162(Sov. Plant Physiol., Engl. Transl.)Google Scholar
  15. 15.
    Mudrik, V.A., Romanova, A.K., Ivanov, B.N., Novichkova, N.S., Polyakova, V.A. 1997Effect of Increased CO2 Concentration on Growth, Photosynthesis, and Biochemical Composition of Pisum sativum L. PlantsFiziol. Rast.442632(Russ. J. Plant Physiol., Engl. Transl.)Google Scholar
  16. 16.
    Demmers-Derks, H., Mitchell, R.A.G., Mitchell, V.J., Lawlor, D.W. 1998Response of Sugar Beet (Beta vulgaris L.) Yield and Biochemical Composition to Elevated CO2, Temperature and Two Nitrogen ApplicationsPlant Cell Environ.21829836Google Scholar
  17. 17.
    Edwards, G., Walker, D. 1983C3: C4 Mechanisms, and Cellular and Environmental Regulation of PhotosynthesisBlackwell Sci.OxfordGoogle Scholar
  18. 18.
    Maroco, J.P., Edwards, G.E., Ku, M.S.B. 1999Photosynthetic Acclimation of Maize to Growth under Elevated Levels of Carbon DioxidePlanta210115125Google Scholar
  19. 19.
    Andreeva, T.F., Strogonova, L.E., Voevudskaya, S.Yu., Maevskaya, S.N., Cherkanova, N.N. 1989Influence of the High CO2 Concentration on Photosynthesis, Carbohydrate and Nitrogen Metabolism, and Growth in Mustard PlantsFiziol. Rast.364048(Sov. Plant Physiol., Engl. Transl.)Google Scholar
  20. 20.
    Idso, S.B., Kimball, B.A. 1992Seasonal Fine-Root Biomass Development of Sour Oranges Trees Grown in Atmospheres of Ambient and Elevated CO2 ConcentrationPlant Cell Environ.15337341Google Scholar
  21. 21.
    Eamus, D., Jarvis, P.G. 1989The Direct Effects of Increase in the Global Atmospheric CO2 Concentration on Natural and Commercial Temperate Trees and ForestsAdv. Ecol. Res.19155Google Scholar
  22. 22.
    Luo, Y., Field, C.B., Mooney, H.A. 1994Predicting Responses of Photosynthesis and Root Fraction to Elevated [CO2]: Interaction among Carbon, Nitrogen, and GrowthPlant Cell Environ.1711951204Google Scholar
  23. 23.
    Korschner, W.M., Wagner, F., Visscher, E.H., Vissner, H. 1997The Response of Leaf Stomatal Frequency to a Future CO2-Enriched Atmosphere: Constraints from Historical ObservationsGeol. Rundschau86512517Google Scholar
  24. 24.
    Amthor, J.S., Koch, G.W., Bloom, A.J. 1991Respiration in a Future, Higher-CO2 WorldPlant Cell Environ.141320Google Scholar
  25. 25.
    Tsyuryupa, S.N., Mudrik, V.A., Romanova, A.K. 2002Effects of the Increased CO2 Concentration on Transpiration and Kinetics of Photosynthetic CO2 Exchange in Sugar Beet under Various Nitrate LevelsDokl. Akad. Nauk384563565Google Scholar
  26. 26.
    Thomas, R.B., Griffin, K.L. 1994Direct and Indirect Effects of Atmospheric Carbon Dioxide Enrichment on Leaf Respiration of Glycine max (L.) Merr.Plant Physiol.104355361Google Scholar
  27. 27.
    Wang, X., Lewis, J.D., Tissues, D.T., Seemann, J.R., Griffin, K.L. 2001Effects of Elevated Atmospheric CO2 Concentration on Leaf Dark Respiration of Xanthium strumarium in Light and in DarknessProc. Natl. Acad. Sci. USA9824792484Google Scholar
  28. 28.
    Sicher, R.C., Kremer, D.F. 1994Responses of Nicotiana tabacum to CO2 Enrichment at Low Photon Flux DensityPhysiol. Plant.92383388Google Scholar
  29. 29.
    Gulyaev, B.I., Sitnitskii, P.A., Manuil’skii, V.D., and Likholat, D.A., Influence of the Elevated CO2 Concentration on Photosynthesis, Growth, and Phytohormones in Sunflower, Dokl. Akad. Nauk USSR, Ser. B, 1989, no. 12, pp. 55–58.Google Scholar
  30. 30.
    Romanova, A.K., Mudrik, V.A., Novichkova, N.S., Demidova, R.N., Polyakova, V.A. 2002Physiological and Biochemical Characteristics of Sugar Beet Plants Grown at an Increased Carbon Dioxide Concentration and at Various Nitrate DosesFiziol. Rast.49230237(Russ. J. Plant Physiol., Engl. Transl.)Google Scholar
  31. 31.
    Stitt, S., Huber, S., Kerr, P. 1987Control of Sucrose SynthesisHatch, M.D.Boardman, N.K. eds. The Biochemistry of PlantsAcademicNew York327Google Scholar
  32. 32.
    Foyer, C.H. 1988Feedback Inhibition of Photosynthesis through Source-Sink Regulation in LeavesPlant Physiol. Biochem.26483492Google Scholar
  33. 33.
    Millford, G.F.J., Pearman, J. 1975The Relationship between Photosynthesis and Concentration of Carbohydrates in the Leaves of Sugar BeetPhotosynthetica97881Google Scholar
  34. 34.
    Sawada, S., Kuninaka, V., Watanabe, K., Sato, A., Kawamura, H., Komine, K., Sakamoto, T., Kasai, M. 2001The Mechanism of Suppress Photosynthesis through End-Product Inhibition in Single-Rooted Soybean Leaves during Acclimation to CO2 EnrichmentPlant Cell Physiol.4210931102Google Scholar
  35. 35.
    Yelle, S., Beeson, R.C., Trudel, M.J., Gosselin, A. 1989Acclimation of Two Tomato Species to High Atmospheric CO2: 1. Sugar and Starch ConcentrationPlant Physiol.9014651472Google Scholar
  36. 36.
    Williams, J.H.H., Winters, A.L., Rollosk, S.J., Farrar, J.F. 1992Regulation of Leaf Metabolism by SucroseFiziol. Rast.39687691(Sov. Plant Physiol., Engl. Transl.)Google Scholar
  37. 37.
    Kursanov, A.L. 1976Transport assimilyatov v rasteniiNaukaMoscowTranslated under the title Assimilate Transport in PlantsGoogle Scholar
  38. 38.
    Pavlinova, O.A., Balakhontsev, E.N., Prasolova, M.F., Turkina, M.V. 2002Sucrose-Phosphate Synthase, Sucrose Synthase, and Invertase in Sugar Beet LeavesFiziol. Rast.497884(Russ. J. Plant Physiol., Engl. Transl.)Google Scholar
  39. 39.
    Sokolova, S.V., Balakshina, N.O., Krasavina, M.S. 2002Activation of Soluble Acid Invertase Accompanies the Cytokinin-Induced Source-Sink Leaf TransitionFiziol. Rast.4998104(Russ. J. Plant Physiol., Engl. Transl.)Google Scholar
  40. 40.
    Upmeyer, D.T., Koller, G.M. 1973Diurnal Trends in Net Photosynthesis Rate and Carbohydrate Levels in Soybean LeavesPlant Physiol.51871874Google Scholar
  41. 41.
    Robinson, S.P. 1985Osmotic Adjustment by Intact Isolated Chloroplasts in Response to Osmotic Stress and Its Effect on Photosynthesis and Chloroplast VolumePlant Physiol.799961002Google Scholar
  42. 42.
    Kovtun, Y., Daie, J. 1995End-Product Control of Carbon Metabolism in Culture-Grown Sugar Beet PlantsPlant Physiol.10816471656Google Scholar
  43. 43.
    Goldschmidt, E.E., Huber, S.C. 1992Regulation of Photosynthesis by End-Product Accumulation in Leaves of Plants Storing Starch, Sucrose, and Hexose SugarsPlant Physiol.9914431448Google Scholar
  44. 44.
    Schaewen, A., Stitt, M., Schmidt, R., Sonnewald, U., Willmitzer, L. 1990Expression of a Yeast-Derived Invertase in the Cell Wall of Tobacco and Arabidopsis Plants Leads to Accumulation of Carbohydrate and Inhibition of Photosynthesis and Strongly Influences Growth and Phenotype of Transgenic Tobacco PlantsEMBO J.930333044Google Scholar
  45. 45.
    Stitt, V., Schaeven, A., Willmitzer, L. 1991“Sink” Regulation of Photosynthetic Metabolism in Transgenic Tobacco Plants Expressing Yeast Invertase in Their Cell Wall Involves a Decrease of the Calvin Cycle Enzymes and an Increase of Glycolytic EnzymesPlanta1834050Google Scholar
  46. 46.
    Oosten, J.J., Besford, R.T. 1995Some Relationships between the Gas Exchange, Biochemistry and Molecular Biology of Photosynthesis during Leaf Development of Tomato Plants after Transfer to Different Carbon Dioxide ConcentrationsPlant Cell Environ.1812531266Google Scholar
  47. 47.
    Porter, M.A., Grodzinski, B. 1984Acclimation to High CO2 in Bean: Carbonic Anhydrase and Ribulose Bisphosphate CarboxylasePlant Physiol.74413416Google Scholar
  48. 48.
    Nakano, H., Makino, A., Mae, T. 1997The Effect of Elevated Partial Pressures of CO2 on the Relationship between Photosynthetic Capacity and N Content in Rice LeavesPlant Physiol.115191198Google Scholar
  49. 49.
    Theobald, J.C., Mitchell, R.A.C., Parry, M.A.J., Lawlor, D.W. 1998Estimating the Excess Investment in Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Leaves of Spring Wheat Grown under Elevated CO2Plant Physiol.118945955Google Scholar
  50. 50.
    Besford, R.T., Ludwig, L.J., Withers, A.C. 1990The Greenhouse Effect: Acclimation of Tomato Plants Growing in High CO2, Photosynthesis and Ribulose-1,5-Bisphosphate Carboxylase ProteinJ. Exp. Bot.41925931Google Scholar
  51. 51.
    Koch, K.E. 1996Carbohydrate-Modulated Gene Expression in PlantsAnnu. Rev. Plant Physiol. Plant Mol. Biol.47509540Google Scholar
  52. 52.
    Hinkelton, P.R., Jolliffe, P.A. 1980Alterations in the Physiology of CO2 Exchange in Tomato Plants Grown in CO2-Enriched AtmospheresCan. J. Bot.5821812189Google Scholar
  53. 53.
    Peet, M.M., Huber, S.C., Patterson, D.T. 1986Acclimation to High CO2 in Monoecious Cucumbers: 2. Carbon Exchange Rates, Enzyme Activities and Nutrient ConcentrationsPlant Physiol.806367Google Scholar
  54. 54.
    Yelle, S., Beeson, R.C., Trudel, M.J., Gosselin, A. 1989Acclimation of Two Tomato Species to High Atmospheric CO2. 2. Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and Phosphoenolpyruvate CarboxylasePlant Physiol.9014731477Google Scholar
  55. 55.
    Majeau, N., Coleman, J.R. 1996Effect of CO2 on Carbonic Anhydrase and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Expression in PeaPlant Physiol.112569574Google Scholar
  56. 56.
    Cervigni, T., Teofani, F., Bassanelli, C. 1971Effect of CO2 on Carbonic Anhydrase in Avena sativa and Zea maysPhytochemistry1029912994Google Scholar
  57. 57.
    Chang, C.W. 1975Carbon Dioxide and Senescence in Cotton PlantPlant Physiol.55515519Google Scholar
  58. 58.
    Raines, C.A., Horsnell, P.R., Holder, C., Lloyd, J.C. 1992Arabidopsis thaliana Carbonic Anhydrase: cDNA Sequence and Effect of CO2 on mRNA LevelsPlant. Mol. Biol.2011431148Google Scholar
  59. 59.
    Kachru, R.B., Anderson, L. 1974Chloroplast and Cytoplasmic Enzymes: 5. Pea-Leaf Carbonic AnhydrasePlanta118235240Google Scholar
  60. 60.
    Badger, M.R., Price, G.D. 1994The Role of Carbonic Anhydrase in PhotosynthesisAnnu. Rev. Plant Physiol. Plant Mol. Biol.45369392Google Scholar
  61. 61.
    Ignatova, L.K., Romanova, A.K. 1992Participation of Carbonic Anhydrase in Inhibition of Photosynthesis in Pea Chloroplasts under CO2 ExcessFiziol. Rast.39711717(Sov. Plant Physiol., Engl. Transl.)Google Scholar
  62. 62.
    Majeau, N., Arnoldo, M.A., Coleman, J.R. 1994Modification of Carbonic Anhydrase and Overproduction Constructs in Transgenic TobaccoPlant. Mol. Biol.25377385Google Scholar
  63. 63.
    Price, G.D., Caemmerer, S., Evans, J.R., Yu, J.-W., Lloyd, J., Oja, V., Harrison, K., Gallagher, A. 1994Specific Reduction of Chloroplast Carbonic Anhydrase Activity by Antisense RNA in Transgenic Tobacco Plants Has a Minor Effect on Photosynthetic CO2 AssimilationPlanta193310340Google Scholar
  64. 64.
    Pronina, N.A., Allakhverdiev, S.I., Kupriyanova, E.V., Klyachko-Gurvich, G.L., Klimov, V.V. 2002Carbonic Anhydrase in Subchloroplast Particles of Pea PlantsFiziol. Rast.49341349(Russ. J. Plant Physiol., Engl. Transl.)Google Scholar
  65. 65.
    Romanova, A.K., Mudrik, V.A., Ignatova, L.K., Novichkova, N.S., and Ivanov, B.N., Symptoms of Initial Adaptation to the Increased Atmospheric CO2 Concentration in Sugar Beet, Tez. 5-go SDezda OFRR (Abst. 5th Congress Society Plant Physiol. Russia), Pensa, 2003, p. 330.Google Scholar
  66. 66.
    Ignatova, L.K., Rudenko, N.N., Romanova, A.K., Nikonova, S.I., and Ivanov, B.N., Soluble and Membrane Bounded Carbonic Anhydrases in Pea Leaves and Effect of Atmospheric CO2 Content on Their Activity, Tez. 5-go SDezda (Abst. 5th Congress Society Plant Physiol. Russia), Pensa, 2003, pp. 45–46.Google Scholar
  67. 67.
    Huber, S.C., Huber, J.L. 1992Role of Sucrose-Phosphate Synthase in Sucrose Metabolism in LeavesPlant Physiol.9912751278Google Scholar
  68. 68.
    Oosten, J.J., Wilkins, D., Besford, R.T. 1994Regulation of the Expression of Photosynthetic Nuclear Genes by CO2 Is Mimicked by Regulation by Carbohydrates: A Mechanism for the Acclimation of Photosynthesis to High CO2?Plant Cell Environ.17913923Google Scholar
  69. 69.
    Havir, E.A., McHale, N.A. 1989Regulation of Catalase in Leaves of Nicotiana sylvestris by High CO2Plant Physiol.89952957Google Scholar
  70. 70.
    Woodrow, I.E., Berry, J.A. 1988Enzymatic Regulation of Photosynthetic CO2 Fixation in C3 PlantsAnnu. Rev. Plant Physiol. Plant Mol. Biol.39533594Google Scholar
  71. 71.
    Jang, J.-C., Sheen, J. 1994Sugar Sensing in Higher PlantsPlant Cell616651679CrossRefPubMedGoogle Scholar
  72. 72.
    Krapp, A., Quick, W.P., Stitt, M. 1991Ribuloso-1,5-Bisphosphate Carboxylase/Oxygenase, Other Calvin Cycle Enzymes and Chlorophyll Decrease when Glucose Is Supplied to Mature Spinach Leaves via the Transpiration StreamPlanta1865869CrossRefGoogle Scholar
  73. 73.
    Krapp, A., Hoffmann, B., Schaefer, C., Stitt, M. 1993Regulation of the Expression of rbcS and Other Photosynthetic Genes by Carbohydrates: A Mechanism for the “Sink Regulation” of PhotosynthesisPlant J.3817828Google Scholar
  74. 74.
    Murashige, T., Scoog, F. 1962A Revised Medium for Rapid Growth and Bioassay with Tobacco Tissue CulturesPhysiol. Plant.15473496Google Scholar
  75. 75.
    Jang, J.-Ch., Leon, P., Zhou, L., Sheen, J. 1997Hexokinase as a Sugar Sensor in Higher PlantsPlant Cell959CrossRefGoogle Scholar
  76. 76.
    Dickinson, C., Altabella, T., Chrispeels, M.J. 1991Slow Growth Phenotype of Transgenic Tomato Expressing Apoplastic InvertasePlant Physiol.95420425Google Scholar
  77. 77.
    Sonnewald, U., Brauer, M., Schaewen, A., Stitt, M., Willmitzer, L. 1991Transgenic Tobacco Plants Expressing Yeast-Derived Invertase in the Cytosol, Vacuole, or Apoplast: A Powerful Tool for Studying Sucrose Metabolism and Sink/Source InteractionsPlant J.195106Google Scholar
  78. 78.
    Dai, N., Schaffer, A., Petreikiv, M., Shanak, Y., Giller, Y., Ratner, K., Levine, A. 1999Overexpression of Arabidopsis Hexokinase in Tomato Plant Inhibits Growth, Reduces Photosynthesis and Induces Rapid SenescencePlant Cell1112531266CrossRefPubMedGoogle Scholar
  79. 79.
    Smeekens, S.C.M., Rook, F. 1997Sugar Sensing and Sugar-Mediated Signal Transduction in PlantsPlant Physiol.115713Google Scholar
  80. 80.
    Scharrenberger, C. 1990Characterization and Compartmentation, in Green Leaves, of Hexokinases with Different Specificities for Glucose, Fructose and Mannose and Nucleotide TriphosphatesPlanta181249255Google Scholar
  81. 81.
    Sisler, E.S., Wood, C. 1988Interaction of Ethylene and CO2Physiol. Plant.73440444Google Scholar
  82. 82.
    Grodzinsky, B. 1992Plant Nutrition and Growth Regulation by CO2 EnrichmentBioScience42517525Google Scholar
  83. 83.
    Kulaeva, O.N., Prokoptseva, O.S. 2004Recent Advances in the Study of Mechanisms of Phytohormone ActionBiokhimiya69293310Google Scholar
  84. 84.
    Miller, A., Tsai, Ch.-H., Hemphill, D., Endres, M., Rodermel, S., Stalding, M. 1997Elevated CO2 Effects during Leaf OntogenyPlant Physiol.11511951200Google Scholar
  85. 85.
    Long, S.P. 1991Modification of the Response of Photosynthetic Productivity to Rising Temperature by CO2 Concentrations: Has Its Importance Underestimated?Plant Cell Environ.14729739Google Scholar
  86. 86.
    Bunce, J.A. 2000Acclimation to Temperature of the Response of Photosynthesis to Increased Carbon Dioxide Concentration in Taraxanum officinalePhotosynth. Res.648994Google Scholar
  87. 87.
    Alexandrov, G.A., Oikava, T., Yamagata, Y. 2003Climate Dependence of the CO2 Fertilization Effect on Terrestrial Net Primary ProductionTellus55B669675Google Scholar
  88. 88.
    Arp, W.J. 1991Effects of Source-Sink Relations on Photosynthetic Acclimation to Elevated CO2Plant Cell Environ.14869875Google Scholar
  89. 89.
    Rowland-Bamford, A.J., Baker, J.T., Allen, L.Y., Bowes, G. 1991Acclimation of Rice to Changing Atmospheric Carbon Dioxide ConcentrationPlant Cell Environ.14577583Google Scholar
  90. 90.
    Martin, T., Oswald, O., Graham, I.A. 2002Arabidopsis Seedlings Growth, Storage Lipid Mobilization, and Photosynthetic Gene Expression Are Regulated by Carbon : Nitrogen AvailabilityPlant Physiol.128472481Google Scholar
  91. 91.
    Adam, N.R., Wall, G.W., Kimball, B.A., Pinter, P.J., LaMorte, R.L., Hunsaker, D.J., Adamsen, F.J., Tompson, T., Matthias, A.D., Leavitt, S.W., Webber, A.N. 2000Acclimation Response of Spring Wheat in a Free-Air CO2 Enrichment (FACE) with Variable Soil Nitrogen Regimes: 1. Leaf Position and Phenology Determine Acclimation ResponsePhotosynth. Res.666577Google Scholar
  92. 92.
    Brooks, T., Wall, G.W., Pinter, P.J., Kimball, B.A., LaMorte, R.L., Leavitt, S.W., Matthias, A.D., Adamsen, F.J., Hunsaker, D.J., Webber, A.N. 2000Acclimation Response of Spring Wheat in a Free-Air CO2 Enrichment (FACE) Atmosphere with Variable Soil Nitrogen Regimes: 3. Canopy Architecture and Gas ExchangePhotosynth. Res.6697108Google Scholar
  93. 93.
    Webber, A.H., Nie, G.-Y., Long, S.P. 1994Acclimation of Photosynthetic Proteins to Rising Atmospheric CO2Photosynth. Res.39413425Google Scholar
  94. 94.
    Mudrik, V.A., Tsyuryupa, S.N., Novichkova, N.S., Romanova, A.K. 2001Effect of Elevated Nitrate Dose on Photosynthesis of Sugar Beet Grown under Doubled CO2 Concentration in AtmosphereVestn. Bashkirskogo Univ.26365Google Scholar
  95. 95.
    Stitt, V., Krapp, A. 1999The Interaction between Elevated Carbon Dioxide and Nitrogen Nutrition: The Physiological and Molecular BackgroundPlant Cell Environ.22583621Google Scholar
  96. 96.
    Fondy, B.R., Geiger, D.R., Servaites, J.C. 1989Photosynthesis, Carbohydrate Metabolism and Export in Beta vulgaris L. and Phaseolus vulgaris L. during Square and Sinusoidal Light RegimesPlant Physiol.89396402Google Scholar
  97. 97.
    Conroy, J.P., Ghannoum, O., Jutla, D., Rogers, G., Seneweera, S. 1998Plant Responses to Elevated CO2 and Climate StressdeKok, L.J.Stulen, I. eds. Responses of Plant Metabolism to Air Pollution and Global ChangeBackhuysLeiden181191Google Scholar
  98. 98.
    Baçhzek-Kwinta, R., Kósielniak, J. 2003Anti-Oxidative Effect of Elevated CO2 Concentration in the Air on Maize Hybrids Subjected to Severe ChillPhotosynthetica41161165Google Scholar
  99. 99.
    Pospišilová, J., Catský, J. 1999Development of Water Stress under Increased Atmospheric CO2 ConcentrationPhotosynthetica42124Google Scholar
  100. 100.
    Pukhal’skaya, N.V., Osipova, L.V. 1999Drought Resistance of Wheat Plants in an Atmosphere Enriched with CO2Fiziol. Rast.46259267(Russ. J. Plant Physiol., Engl. Transl.)Google Scholar
  101. 101.
    Mokronosov, A.T. 1999Global Photosynthesis and Biodiversity of VegetationZavarzin, G.A. eds. Krugovorot ugleroda na territorii RossiiIzd-vo NTP “Global’nye izmeneniya prirodnoi sredy i klimata”Moscow1962(Carbon Turnover in the Zone of Russia)Google Scholar
  102. 102.
    Retallack, G.J. 2001A 300-Million-Year Record of Atmospheric Carbon Dioxide from Fossil Plant CuticlesNature411287290CrossRefPubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. K. Romanova
    • 1
  1. 1.Institute of Basic Problems of BiologyRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations