Generation of Plasma with Increased Ionization Degree in a Pulsed High-Current Low-Pressure Hollow Cathode Discharge

The paper presents the results of research of the processes of generation of pulsed beam-plasma formations in a high-current non-self-sustained glow discharge with a hollow cathode at low (0.025–0.25 Pa) pressures. In the hollow cathode volume of 0.34 m3, the glow discharge pulsed currents up to 800 A were obtained at injected electron currents up to 150 A, discharge burning voltages up to 400 V, and a pulse duration of 1 ms. The plasma with a density of about 1012 cm-3 was formed with ionization degree up to 16%. It has been shown that the electron free path length λC between the Coulomb interactions in the pressure range 0.025–0.05 Pa is by a factor of about 3.5 less than the electron free path length λe when interacting with neutrals at high (10–15%) degree of plasma ionization. The measured saturation electron current density on the single electric probe was 3.7 (0.025 Pa), 5 (0.05 Pa), and 6.7 A/cm2 (0.25 Pa). Relatively homogeneous beam-plasma formations generated in the glow discharge are promising for the formation of intensive pulsed electron beams of large cross section.

This is a preview of subscription content, access via your institution.


  1. 1.

    D. M. Goebel and R. M. Watkins, Rev. Sci. Instrum., 71, No. 2, 388–398 (2000).

    ADS  Article  Google Scholar 

  2. 2.

    G. A. Mesyats and D. I. Proskurovsky, Pulsed Electrical Discharge in Vacuum, Springer, Berlin (1989).

    Google Scholar 

  3. 3.

    S. P. Bugaev, Yu. E. Kreindel, and P. M. Schanin, Electron Beams of Large Cross Section [in Russian], Energoatomizdat, Moscow (1984).

    Google Scholar 

  4. 4.

    P. M. Schanin, N. N. Koval, V. S. Tolkachev, and V. I. Gushenets, Russ. Phys. J., 43, No. 5, 427–431 (2000).

    Article  Google Scholar 

  5. 5.

    V. N. Devyatkov et al., Laser Part. Beams, 21, 243–248 (2003).

    ADS  Article  Google Scholar 

  6. 6.

    Y. D. Korolev and N. N. Koval, J. Phys. D: Appl. Phys., 51, 323001 (2018).

    Article  Google Scholar 

  7. 7.

    D. M. Goebel, R. W. Schumacher, and R. M. Watkins, in: Proc. 9th Int. Conf. on High Power Particle Beams, Beams-92, Vol. 2, Washington (1992), p. 1093.

  8. 8.

    A. S. Metel’ and Yu. A. Miller, Prib. Tekh. Eksp., No. 3, 76–84 (2013).

  9. 9.

    M. S. Vorobyov et al., in: Proc. 25th Int. Symp. on Discharges and Electrical Insulation in Vacuum, Vol. 2, Tomsk (2012), pp. 615–618.

  10. 10.

    Yu. S. Protasov, ed., Emission Electronics [in Russian], Publishing House of Bauman Moscow State Technical University, Moscow (2009).

  11. 11.

    J. R. Bayless, Rev. Sci. Instrum., 46, No. 9, 1158–1160 (1975).

    ADS  Article  Google Scholar 

  12. 12.

    V. A. Burdovitsin, A. K. Gordeev, A. S. Klimov, et al., Tech. Phys., 57 (8), 1101–1105 (2012);

    Article  Google Scholar 

  13. 13.

    V. V. Denisov, Yu. H. Akhmadeev, N. N. Koval, et al., Phys. Plasmas, 26, 123510 (2019).

  14. 14.

    V. V. Denisov, Yu. H. Akhmadeev, N. N. Koval, and E. V. Ostroverchov, High Temp. Mater. Proс., 20, No. 4, 309–316 (2016).

    Article  Google Scholar 

  15. 15.

    A. S. Metel’, Zh. Tekh. Fiz., 54, No. 2, 241–247 (1984).

    MathSciNet  Google Scholar 

  16. 16.

    M. V. Nezlin, Dynamics of Beams in Plasma [in Russian], Energoizdat, Moscow (1982).

    Google Scholar 

  17. 17.

    K. N. Ul’yanov, Teplofiz. Vysok. Temp., 37, No. 3, 363–373 (1999).

    Google Scholar 

  18. 18.

    L. M. Biberman, V. S. Vorobyov, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasma [in Russian], Nauka, Moscow (1982).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. V. Yakovlev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 109–116, October, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, V.V., Denisov, V.V., Koval, N.N. et al. Generation of Plasma with Increased Ionization Degree in a Pulsed High-Current Low-Pressure Hollow Cathode Discharge. Russ Phys J (2021).

Download citation


  • glow discharge with a hollow cathode
  • current-voltage characteristic
  • plasma ionization degree
  • plasma density
  • electron emission
  • Coulomb’s interactions
  • single Langmuir probe