Formation, Focusing and Transport of Highintensity, Low-Energy Metal Ion Beams

High-intensity implantation of low-energy ions into various materials demonstrates the formation of long, ionalloyed layers having a thickness of tens and hundreds of micrometers. A deep incorporation of alloying elements in materials is achieved, first of all, due to a stronger radiation-induced ion diffusion at ultrahigh current densities and radiation fluence ranging from 1020 to 1022 cm2, when the diffusion coefficient exceeds its classical value derived from Arrhenius theory by several orders of magnitude. Nevertheless, the generation of low-energy ions with energies of several or a few kiloelectronvolts at high current densities of several hundreds of milliamperes per square metre and their effective transport, is a sophisticated problem. The paper studies the ballistic focusing of high-intensity pulsed ion beams at 2 kV accelerating voltage, 800 μs pulse time, 0.8 duty cycle, and their propagation through the preliminary injected low-density background plasma.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. V. Chekanov et al., JINST, 13, P05022 (2018).

    Article  Google Scholar 

  2. 2.

    E. C. Aschenauer et al., Rep. Prog. Phys., 82, 024301 (2019).

    ADS  Article  Google Scholar 

  3. 3.

    A. D. Kovalenko et al., J. Phys.: Conf. Ser., 678, 012023 (2016).

    Google Scholar 

  4. 4.

    T.-S. Kim et al., Fusion Eng. Des., 136 B, 1365 (2019).

  5. 5.

    A. F. Lifschitz et al., Nucl. Fusion., 54, 043020 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    V. Kumar and R. Kumar, Opt. Mater., 91, 455–469 (2019).

    ADS  Article  Google Scholar 

  7. 7.

    D. Dellasega, Appl. Surf. Sci., 266, 161 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    R. M. Langford, T.-X. Wang, and D. Ozkayac, Microelectron. Eng., 84, No. 5–8, 784 (2007).

    Article  Google Scholar 

  9. 9.

    N. Kumar, Mater. Chem. Phys., 183, 165 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    J. Techarang et al., Nucl. Instrum. Methods Phys. Res. B, 459, 43 (2019).

    ADS  Article  Google Scholar 

  11. 11.

    S. Mändl et al., Surf. Coat. Technol., 365, 83–93 (2019).

    Article  Google Scholar 

  12. 12.

    R. M. Rogov, Vacuum, 166, 84 (2019).

    ADS  Article  Google Scholar 

  13. 13.

    T. Chen et al., Nucl. Instrum. Methods Phys. Res. B, 451, 10 (2019).

    Google Scholar 

  14. 14.

    J. M. Poate, G. Foti, and D. C. Jacobson, eds, Surface Modification and Alloying by Laser, Ion, and Electron Beams, Springer, Berlin (2013).

    Google Scholar 

  15. 15.

    J. S. Williams and J. M. Poate, eds, Ion Implantation and Beam Processing, Academic, Orlando (1984).

    Google Scholar 

  16. 16.

    I. G. Brown, Rev. Sci. Instrum., 65, 3061 (1994).

    ADS  Article  Google Scholar 

  17. 17.

    S. P. Bugaev, E. M. Oks, P. M. Shchanin, and G. Yu. Yushkov, Russ. Phys. J., 37, No. 3, 245–254 (1994).

    Article  Google Scholar 

  18. 18.

    A. I. Ryabchikov et al., Rev. Sci. Instrum., 69, 810 (1998).

    ADS  Article  Google Scholar 

  19. 19.

    A. G. Nikolaev et al., Rev. Sci. Instrum., 83, No. 2, 02A501 (1–3) (2012).

  20. 20.

    J. R. Conrad et al., J. Appl. Phys., 62, 4591 (1987).

    ADS  Article  Google Scholar 

  21. 21.

    N. M. Arzubov, G. P. Isaev, and A. I. Ryabchikov, Prib. Tekh. Eksp., 5, 28 (1988).

    Google Scholar 

  22. 22.

    A. Anders, Surf. Coat. Technol., 93, No. 2-3, 158 (1997).

    Article  Google Scholar 

  23. 23.

    R. J. Adler and S. T. Picraux, Nucl. Instrum. Methods Phys. Res. B, 6, 123–128 (1985).

    ADS  Article  Google Scholar 

  24. 24.

    A. Anders, J. Vac. Sci. Technol. B, 12, 815 (1994).

    Article  Google Scholar 

  25. 25.

    F. Torregrosa, in: Proc. 22nd Int. Conf. on Ion Implantation Technology, Würzburg (2018).

  26. 26.

    R. Wei, Surf. Coat. Technol., 83, 218 (1996).

    Article  Google Scholar 

  27. 27.

    M. Ueda, Nucl. Instrum. Methods Phys. Res. B, 240, No. 1-2, 199 (2005).

    ADS  Article  Google Scholar 

  28. 28.

    N. V. Gavrilov and A. I. Men’shakov, Tech. Phys., 57, 399 (2012).

    Article  Google Scholar 

  29. 29.

    A. I. Ryabchikov et al., Vacuum, 143, 447 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    A. I. Ryabchikov et al., J. Appl. Phys., 123, No. 23, 233301 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    A. I. Ryabchikov et al., Surf. Coat. Technol., 355, 123 (2018).

    Article  Google Scholar 

  32. 32.

    A. I. Ryabchikov et al., Surf. Coat. Technol., 355, 129 (2018).

    Article  Google Scholar 

  33. 33.

    A. I. Ryabchikov et al., Appl. Surf. Sci., 439, 106 (2018).

    ADS  Article  Google Scholar 

  34. 34.

    A. Anders, ed., Handbook of Plasma Immersion Implantation and Deposition, John Wiley & Sons, New York (2000).

    Google Scholar 

  35. 35.

    J. M. Lafferty, ed., Vacuum Arcs: Theory and Applications, John Wiley & Sons, New York (1980).

    Google Scholar 

  36. 36.

    B. Jüttner, J. Phys. D: Appl. Phys., 34 R, 103 (2001).

  37. 37.

    S. Humphries, ed., Charged Particle Beams, John Wiley & Sons, New York (1990).

    Google Scholar 

  38. 38.

    M. Lieberman, J. Appl. Phys., 66, No. 7, 2926 (1989).

    ADS  Article  Google Scholar 

  39. 39.

    I. B. Stepanov et al., Rev. Sci. Instrum., 85, No. 2, 4852219 (2014).

    Google Scholar 

  40. 40.

    T. V. Koval et al., J. Phys.: Conf. Ser., 1115, No. 3, 142762 (2018).

    Google Scholar 

  41. 41.

    W. Berdanier, Phys. Plasmas, 22, 013104 (2015).

    ADS  Article  Google Scholar 

  42. 42.

    I. D. Kaganovich et al., Phys. Plasmas, 8, 4180 (2001).

    ADS  Article  Google Scholar 

  43. 43.

    G. Yu. Yushkov et al., J. Appl. Phys., 88, 5618 (2000).

    ADS  Article  Google Scholar 

  44. 44.

    P. Spädtke, Rev. Sci. Instrum., 85, 02A744 (2014).

    Article  Google Scholar 

  45. 45.

    V. D. Irby, Phys. Rev. A, 39, 54 (1989).

    ADS  Article  Google Scholar 

  46. 46.

    I. D. Kaganovich et al., New J. Phys., 8, 278 (2006).

    ADS  Article  Google Scholar 

  47. 47.

    A. Anders, J. Appl. Phys., 82, 3679 (1997).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. I. Ryabchikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 54–66, October, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryabchikov, A.I., Shevelev, A.E., Sivin, D.O. et al. Formation, Focusing and Transport of Highintensity, Low-Energy Metal Ion Beams. Russ Phys J (2021). https://doi.org/10.1007/s11182-021-02224-6

Download citation

Keywords

  • ion beam generation
  • vacuum arc plasma
  • ion implantation