Operational principles and main characteristics of electron sources based on plasma emitters with grid/layer stabilization of the boundary of the emission plasma generated by low-pressure discharges are described. The achieved levels of the parameters and the prospects for future development of the electron sources intended for generation of pulsed high-density (with energy density up to 100 J/cm2 per pulse) low-energy (5–25 keV, 50– 500 A) and high-energy high-current (up to 100 keV,\( \tilde{>} \) 1 kA) electron beams in vacuum with beam energy content up to 5 kJ, pulse frequency (30 μs, 50 s–1), large beam cross section \( \left(\tilde{>}\ 1000\ {\mathrm{cm}}^2\right), \) electron energy up to 250 keV, and current up to 100 A extracted into the ambient atmosphere through an output foil window are considered. The special features of emission plasma generation by low-pressure arc discharges in plasma grid emitters and of electron output from it, the special features of the discharge system of plasma emitters partially immersed into an inhomogeneous magnetic field, and the special features of the formation and transportation of high-density low-energy electron beams in a longitudinal magnetic field are considered. The application field of the electron sources with plasma grid emitters and the processes and technologies implemented with their use are indicated.
This is a preview of subscription content, access via your institution.
References
- 1.
S. P. Bugaev, Yu. E. Kreindel’, and P. M. Schanin, Prib. Tekh. Eksp., No. 1, 7–24 (1980).
- 2.
A. I. Aksenov, S. Yu. Kornilov, M. P. Motorin, and N. G. Rempe, Prib. Tekh. Eksp., No. 2, 84–88 (2017).
- 3.
N. N. Koval, E. M. Oks, Yu. S. Protasov, and N. N. Semashko, Emission of Electrons [in Russian], Publishing House of N. E. Bauman Moscow State Technical University, Moscow (2009).
- 4.
S. I. Molokovskii and A. D. Sushkov, Intensive Electronic and Ionic Beams [in Russian], Energoatomizdat, Moscow (1991).
- 5.
V. Engelko, B. Yatsenko, G. Mueller, and H. Bluhm, Vacuum, 62, 211–216 (2001).
- 6.
G. E. Ozur, D. I. Proskurovsky, and K. V. Karlik, Instrum. Exp. Tech., 48, No. 6, 753–760 (2005).
- 7.
A. B. Belov, O. A. Bytsenko, A. V. Krainikov, et al., High-Current Pulsed Electron Beams for Aviation Engine Building, A. S. Novikov, V. A. Shulov, and V. I. Engelko, eds., Dipak, Moscow (2012).
- 8.
G. A. Mesyats, Explosive Electron Emission [in Russian], Fizmatlit, Moscow (2011).
- 9.
G. A. Mesyats, Ectons, Parts 1–3 [in Russian], Publishing House UIF “Nauka,” Ekaterinburg (1993).
- 10.
Yu. E. Krenidel, Plasma Electron Sources [in Russian], Atomizdat, Moscow (1977).
- 11.
G. S. Kazmin, N. N. Koval, Yu. F. Kreindel, et al., Prib. Tekh. Eksp., No. 4, 19–20 (1977).
- 12.
N. N. Koval and B. M. Nigof, Prib. Tekh. Eksp., No. 6, 121–123 (1980).
- 13.
A. F. Zlobina, G. S. Kazmin, N. N. Koval, Yu. F. Kreindel, Zh. Tekh. Fiz., 50, No. 6, 1203–1207 (1980).
- 14.
N. N. Koval, Yu. F. Kreindel, G. A. Mecyats, et al., Pis’ma Zh. Tekh. Fiz., 9, No. 9, 568–572 (1983).
- 15.
V. I. Gushenets, N.N. Koval, Yu. F. Kreindel, and P. M. Schanin, Zh. Tekh. Fiz., 57, No. 11, 2264–2268 (1987).
- 16.
N. N. Koval, E. M. Oks, Yu. E. Kreindel, et al., Nucl. Instrum. Methods Phys. Res. A, 312, 417–428 (1991).
- 17.
V. I. Devyatkov, N. N. Koval, and P. M. Schanin, Rus. Phys. J., 37, No. 3, 263–267 (1994).
- 18.
S. W. A. Giclrens, P. J. M. Peters, W. J. Witteman, et al., Rev. Sci. Instrum., 37, No. 7, 2449–2452 (1996).
- 19.
N. P. Kondrat’eva, N. N. Koval, Yu. D. Korolev, and P. M. Schanin, J. Phys. D, 32, 699–705 (1999).
- 20.
V. N. Devyatkov, N. N. Koval, and P. M. Schanin, Zh. Tech. Fiz., 68, No. 1, 44–48 (1998).
- 21.
V. N. Devyatkov, N. N. Koval, and P. M. SchaninRuss. Phys. J., 44, No. 9, 937–946 (2001).
- 22.
V. N. Devyatkov, N. N. Koval, and P. M. Schanin, Zh. Tekh. Fiz., 71, No. 5, 20–24 (2001).
- 23.
S. I. Belyuk, V. A. Gruzdev, Yu. I. Zherdev, and Yu. E. Kreindel, Prib. Tekh. Eksp., No. 3, 30–32 (1975).
- 24.
G. S. Kazmin, Yu. E. Kreindel, and A. V. Shchelokov, in: Development and Application of Sources of Intense Electron Beams, G. A. Mesyats, ed. [in Russian], Nauka, Novosibirsk (1976), pp. 106–112.
- 25.
A. V. Zharinov, Yu. A. Kovalenko, I. S. Roganov, and P. M. Tyuryukanov, Zh. Tekh. Fiz., 56, No. 1, 66–71 (1986).
- 26.
A. V. Zharinov, Yu. A. Kovalenko, I. S. Roganov, and P. M. Tyuryukanov, Zh. Tekh. Fiz., 56, No. 4, 687–693 (1986).
- 27.
V. N. Devyatkov and N. N. Koval, Russ. Phys. J., 60, No. 9, 44–48 (2017).
- 28.
N. N. Koval, P. M. Schanin, V. V. Devyatkov, et al., Prib. Tekh. Eksp., No. 1, 135–140 (2005).
- 29.
N. N. Koval, N. S. Sochugov, V. N. Devyatkov, et al., in: Proc. 8th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk (2006), p. 51.
- 30.
V. N. Devyatkov, Y. E. Ivanov, O. V. Krysina, et al., Vacuum, 143, 464–472 (2017).
- 31.
V. N. Devyatkov and N. N. Koval, J. Phys.: Conf. Ser., 1393, 012040 (2019).
- 32.
V. N. Devyatkov and N. N. Koval, Izv. Vyssh. Uchebn. Zaved. Fiz., 61, No. 9/2, 3–7 (2018).
- 33.
V. N. Devyatkov and N. N. Koval, J. Phys.: Conf. Ser., 552, 0102014 (2014).
- 34.
N. N. Koval and Yu. F. Ivanov, Electron-ion Plasma Modification of the Surface of Nonferrous Metals and Alloys, Publishing House of Scientific and Technology Literature, Tomsk, (2016).
- 35.
N. N. Koval and Yu. F. Ivanov, Russ. Phys. J., 62, No. 7,1161–1170 (2019).
- 36.
N. N. Koval and Yu. F. Ivanov, Evolution of the Structure of the Steel Surface Layer Subjected to Electron-Ion Plasma Treatment [in Russian], Publishing House of Scientific and Technology Literature, Tomsk (2016).
- 37.
I. Kandaurov, V. Astrelin, A. Avrorov, et al., Fusion Sci. Technol., 59, No. 1T, 67–69 (2011).
- 38.
A. Burdakov, A. Azhannikov, V. Astrelin, et al., Fusion Sci. Technol., 51, No. 2T, 106–111 (2007).
- 39.
V. I. Gushenets, N. N. Koval, and P. M. Schanin, Pis’ma Zh. Tekh. Fiz., 16, No. 8, 12 (1990).
- 40.
M. S. Vorobyov, S. A. Gamermaister, V. N. Devyatkov, et al., Pis’ma Zh. Tekh. Fiz., 40, No. 12, 24–30 (2014).
- 41.
S. P. Bugaev, Yu. E. Kreindel, and P. M. Schanin, Electron Beams with Large Cross Sections [in Russian], Energoatomizdat, Moscow (1984).
- 42.
M. S. Vorobyov, V. N. Devyatkov, N. N. Koval, and S. A. Sulakshin, Russ. Phys. J., 60, No. 8, 109–114 (2017).
- 43.
V. T. Astrelin, I. V. Kandaurov, M. S. Vorobyov, et al., Vacuum, 143, 495–500 (2017).
- 44.
V. T. Astrelin, M. S. Vorobyov, I. V. Kandaurov, and V. V. Kurkuchekov, Izv. RAN. Ser. Fizich., 83, No. 11, 1529–1533 (2019).
- 45.
G. S. Kazmin, N. N. Koval, Yu. E. Kreindel, et al., Prib. Tekh. Eksp., No. 4, 19–20 (1977).
- 46.
A. M. Efremov, B. M. Kovalchuk, Yu. E. Kreindel, et al., Prib. Tekh. Eksp., No. 1, 167–169 (1987).
- 47.
N. N. Koval, E. M. Oks, P. M. Schanin, et al., Nucl. Instrum. Meth. A, 321, 417–428 (1992).
- 48.
A. S. Bugaev, N. N. Koval, M. I. Lomaev, et al., Laser Part. Beams, 1994, 12, No. 4, 633–646 (1994).
- 49.
M. S. Vorobyuv, N. N. Koval, and S. A. Sulakshin, Prib. Tekh. Eksp., No. 5, 112–120 (2015).
- 50.
M. S. Vorobyov and N. N. Koval, Pis’ma Zh. Tekh. Fiz., 42, No. 11, 41–47 (2016).
- 51.
M. S. Vorobyov, N. N. Koval, and V. V. Yakovlev, Izv. Vyssh. Uchebn. Zaved. Fiz., 60, No. 10/2, 20–24 (2017).
- 52.
M. S. Vorobyov, V. N. Devyatkov, N. N. Koval, and V. V. Shugurov, IOP J. Phys.: Conf. Ser., 652, 012066 (1–6) (2015).
- 53.
M. S. Vorobyov, E. Kh. Baksht, N. N. Koval, et al., in: Proc. 20th Int. Symp. on High-Current Electronics ISHCE 2018, Tomsk (2018), pp. 209–213.
- 54.
N.N. Koval, Yu. E. Kreindel, F. A. Mesyats, et al., Pis’ma Zh. Eksp. Tech. Fiz., 12, No. 1, 37–42 (1986).
- 55.
V. N. Chmukh, Radiation solidification of unsaturated oligoesters irradiated by nanosecond high-current electron beams, Cand. Chem. Sci. Diss., Tomsk (1983).
- 56.
T. V. Chizh, N. N. Loy, A. N. Pavlov, and M. S. Vorobyov, IOP J. Phys.: Conf. Ser., 1115, 022025 (2018).
Author information
Affiliations
Corresponding author
Additional information
Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No.10, pp. 7–16, October, 2020.
Rights and permissions
About this article
Cite this article
Koval, N.N., Devyatkov, V.N. & Vorobyev, M.S. Electron Sources with Plasma Grid Emitters: Progress and Prospects. Russ Phys J (2021). https://doi.org/10.1007/s11182-021-02219-3
Received:
Published:
Keywords
- plasma grid emitter
- pulsed electron source
- electron beam formation and transportation
- material surface modification by a pulsed electron beam
- electron beam put into the atmosphere
- work-hardening technologies
- radiation technologies