Electron Sources with Plasma Grid Emitters: Progress and Prospects

Operational principles and main characteristics of electron sources based on plasma emitters with grid/layer stabilization of the boundary of the emission plasma generated by low-pressure discharges are described. The achieved levels of the parameters and the prospects for future development of the electron sources intended for generation of pulsed high-density (with energy density up to 100 J/cm2 per pulse) low-energy (5–25 keV, 50– 500 A) and high-energy high-current (up to 100 keV,\( \tilde{>} \) 1 kA) electron beams in vacuum with beam energy content up to 5 kJ, pulse frequency (30 μs, 50 s–1), large beam cross section \( \left(\tilde{>}\ 1000\ {\mathrm{cm}}^2\right), \) electron energy up to 250 keV, and current up to 100 A extracted into the ambient atmosphere through an output foil window are considered. The special features of emission plasma generation by low-pressure arc discharges in plasma grid emitters and of electron output from it, the special features of the discharge system of plasma emitters partially immersed into an inhomogeneous magnetic field, and the special features of the formation and transportation of high-density low-energy electron beams in a longitudinal magnetic field are considered. The application field of the electron sources with plasma grid emitters and the processes and technologies implemented with their use are indicated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. P. Bugaev, Yu. E. Kreindel’, and P. M. Schanin, Prib. Tekh. Eksp., No. 1, 7–24 (1980).

  2. 2.

    A. I. Aksenov, S. Yu. Kornilov, M. P. Motorin, and N. G. Rempe, Prib. Tekh. Eksp., No. 2, 84–88 (2017).

  3. 3.

    N. N. Koval, E. M. Oks, Yu. S. Protasov, and N. N. Semashko, Emission of Electrons [in Russian], Publishing House of N. E. Bauman Moscow State Technical University, Moscow (2009).

    Google Scholar 

  4. 4.

    S. I. Molokovskii and A. D. Sushkov, Intensive Electronic and Ionic Beams [in Russian], Energoatomizdat, Moscow (1991).

    Google Scholar 

  5. 5.

    V. Engelko, B. Yatsenko, G. Mueller, and H. Bluhm, Vacuum, 62, 211–216 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    G. E. Ozur, D. I. Proskurovsky, and K. V. Karlik, Instrum. Exp. Tech., 48, No. 6, 753–760 (2005).

    Article  Google Scholar 

  7. 7.

    A. B. Belov, O. A. Bytsenko, A. V. Krainikov, et al., High-Current Pulsed Electron Beams for Aviation Engine Building, A. S. Novikov, V. A. Shulov, and V. I. Engelko, eds., Dipak, Moscow (2012).

  8. 8.

    G. A. Mesyats, Explosive Electron Emission [in Russian], Fizmatlit, Moscow (2011).

    Google Scholar 

  9. 9.

    G. A. Mesyats, Ectons, Parts 1–3 [in Russian], Publishing House UIF “Nauka,” Ekaterinburg (1993).

  10. 10.

    Yu. E. Krenidel, Plasma Electron Sources [in Russian], Atomizdat, Moscow (1977).

    Google Scholar 

  11. 11.

    G. S. Kazmin, N. N. Koval, Yu. F. Kreindel, et al., Prib. Tekh. Eksp., No. 4, 19–20 (1977).

  12. 12.

    N. N. Koval and B. M. Nigof, Prib. Tekh. Eksp., No. 6, 121–123 (1980).

  13. 13.

    A. F. Zlobina, G. S. Kazmin, N. N. Koval, Yu. F. Kreindel, Zh. Tekh. Fiz., 50, No. 6, 1203–1207 (1980).

    Google Scholar 

  14. 14.

    N. N. Koval, Yu. F. Kreindel, G. A. Mecyats, et al., Pis’ma Zh. Tekh. Fiz., 9, No. 9, 568–572 (1983).

    Google Scholar 

  15. 15.

    V. I. Gushenets, N.N. Koval, Yu. F. Kreindel, and P. M. Schanin, Zh. Tekh. Fiz., 57, No. 11, 2264–2268 (1987).

    Google Scholar 

  16. 16.

    N. N. Koval, E. M. Oks, Yu. E. Kreindel, et al., Nucl. Instrum. Methods Phys. Res. A, 312, 417–428 (1991).

    Google Scholar 

  17. 17.

    V. I. Devyatkov, N. N. Koval, and P. M. Schanin, Rus. Phys. J., 37, No. 3, 263–267 (1994).

    Article  Google Scholar 

  18. 18.

    S. W. A. Giclrens, P. J. M. Peters, W. J. Witteman, et al., Rev. Sci. Instrum., 37, No. 7, 2449–2452 (1996).

    ADS  Google Scholar 

  19. 19.

    N. P. Kondrat’eva, N. N. Koval, Yu. D. Korolev, and P. M. Schanin, J. Phys. D, 32, 699–705 (1999).

    ADS  Article  Google Scholar 

  20. 20.

    V. N. Devyatkov, N. N. Koval, and P. M. Schanin, Zh. Tech. Fiz., 68, No. 1, 44–48 (1998).

    Google Scholar 

  21. 21.

    V. N. Devyatkov, N. N. Koval, and P. M. SchaninRuss. Phys. J., 44, No. 9, 937–946 (2001).

    Google Scholar 

  22. 22.

    V. N. Devyatkov, N. N. Koval, and P. M. Schanin, Zh. Tekh. Fiz., 71, No. 5, 20–24 (2001).

    Google Scholar 

  23. 23.

    S. I. Belyuk, V. A. Gruzdev, Yu. I. Zherdev, and Yu. E. Kreindel, Prib. Tekh. Eksp., No. 3, 30–32 (1975).

  24. 24.

    G. S. Kazmin, Yu. E. Kreindel, and A. V. Shchelokov, in: Development and Application of Sources of Intense Electron Beams, G. A. Mesyats, ed. [in Russian], Nauka, Novosibirsk (1976), pp. 106–112.

  25. 25.

    A. V. Zharinov, Yu. A. Kovalenko, I. S. Roganov, and P. M. Tyuryukanov, Zh. Tekh. Fiz., 56, No. 1, 66–71 (1986).

    Google Scholar 

  26. 26.

    A. V. Zharinov, Yu. A. Kovalenko, I. S. Roganov, and P. M. Tyuryukanov, Zh. Tekh. Fiz., 56, No. 4, 687–693 (1986).

    Google Scholar 

  27. 27.

    V. N. Devyatkov and N. N. Koval, Russ. Phys. J., 60, No. 9, 44–48 (2017).

    Google Scholar 

  28. 28.

    N. N. Koval, P. M. Schanin, V. V. Devyatkov, et al., Prib. Tekh. Eksp., No. 1, 135–140 (2005).

  29. 29.

    N. N. Koval, N. S. Sochugov, V. N. Devyatkov, et al., in: Proc. 8th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk (2006), p. 51.

  30. 30.

    V. N. Devyatkov, Y. E. Ivanov, O. V. Krysina, et al., Vacuum, 143, 464–472 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    V. N. Devyatkov and N. N. Koval, J. Phys.: Conf. Ser., 1393, 012040 (2019).

    Google Scholar 

  32. 32.

    V. N. Devyatkov and N. N. Koval, Izv. Vyssh. Uchebn. Zaved. Fiz., 61, No. 9/2, 3–7 (2018).

    Google Scholar 

  33. 33.

    V. N. Devyatkov and N. N. Koval, J. Phys.: Conf. Ser., 552, 0102014 (2014).

    Google Scholar 

  34. 34.

    N. N. Koval and Yu. F. Ivanov, Electron-ion Plasma Modification of the Surface of Nonferrous Metals and Alloys, Publishing House of Scientific and Technology Literature, Tomsk, (2016).

    Google Scholar 

  35. 35.

    N. N. Koval and Yu. F. Ivanov, Russ. Phys. J., 62, No. 7,1161–1170 (2019).

    Article  Google Scholar 

  36. 36.

    N. N. Koval and Yu. F. Ivanov, Evolution of the Structure of the Steel Surface Layer Subjected to Electron-Ion Plasma Treatment [in Russian], Publishing House of Scientific and Technology Literature, Tomsk (2016).

    Google Scholar 

  37. 37.

    I. Kandaurov, V. Astrelin, A. Avrorov, et al., Fusion Sci. Technol., 59, No. 1T, 67–69 (2011).

  38. 38.

    A. Burdakov, A. Azhannikov, V. Astrelin, et al., Fusion Sci. Technol., 51, No. 2T, 106–111 (2007).

  39. 39.

    V. I. Gushenets, N. N. Koval, and P. M. Schanin, Pis’ma Zh. Tekh. Fiz., 16, No. 8, 12 (1990).

    Google Scholar 

  40. 40.

    M. S. Vorobyov, S. A. Gamermaister, V. N. Devyatkov, et al., Pis’ma Zh. Tekh. Fiz., 40, No. 12, 24–30 (2014).

    Google Scholar 

  41. 41.

    S. P. Bugaev, Yu. E. Kreindel, and P. M. Schanin, Electron Beams with Large Cross Sections [in Russian], Energoatomizdat, Moscow (1984).

    Google Scholar 

  42. 42.

    M. S. Vorobyov, V. N. Devyatkov, N. N. Koval, and S. A. Sulakshin, Russ. Phys. J., 60, No. 8, 109–114 (2017).

    Article  Google Scholar 

  43. 43.

    V. T. Astrelin, I. V. Kandaurov, M. S. Vorobyov, et al., Vacuum, 143, 495–500 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    V. T. Astrelin, M. S. Vorobyov, I. V. Kandaurov, and V. V. Kurkuchekov, Izv. RAN. Ser. Fizich., 83, No. 11, 1529–1533 (2019).

    Google Scholar 

  45. 45.

    G. S. Kazmin, N. N. Koval, Yu. E. Kreindel, et al., Prib. Tekh. Eksp., No. 4, 19–20 (1977).

  46. 46.

    A. M. Efremov, B. M. Kovalchuk, Yu. E. Kreindel, et al., Prib. Tekh. Eksp., No. 1, 167–169 (1987).

  47. 47.

    N. N. Koval, E. M. Oks, P. M. Schanin, et al., Nucl. Instrum. Meth. A, 321, 417–428 (1992).

    ADS  Article  Google Scholar 

  48. 48.

    A. S. Bugaev, N. N. Koval, M. I. Lomaev, et al., Laser Part. Beams, 1994, 12, No. 4, 633–646 (1994).

    Article  Google Scholar 

  49. 49.

    M. S. Vorobyuv, N. N. Koval, and S. A. Sulakshin, Prib. Tekh. Eksp., No. 5, 112–120 (2015).

  50. 50.

    M. S. Vorobyov and N. N. Koval, Pis’ma Zh. Tekh. Fiz., 42, No. 11, 41–47 (2016).

    Google Scholar 

  51. 51.

    M. S. Vorobyov, N. N. Koval, and V. V. Yakovlev, Izv. Vyssh. Uchebn. Zaved. Fiz., 60, No. 10/2, 20–24 (2017).

    Google Scholar 

  52. 52.

    M. S. Vorobyov, V. N. Devyatkov, N. N. Koval, and V. V. Shugurov, IOP J. Phys.: Conf. Ser., 652, 012066 (1–6) (2015).

    Google Scholar 

  53. 53.

    M. S. Vorobyov, E. Kh. Baksht, N. N. Koval, et al., in: Proc. 20th Int. Symp. on High-Current Electronics ISHCE 2018, Tomsk (2018), pp. 209–213.

  54. 54.

    N.N. Koval, Yu. E. Kreindel, F. A. Mesyats, et al., Pis’ma Zh. Eksp. Tech. Fiz., 12, No. 1, 37–42 (1986).

    Google Scholar 

  55. 55.

    V. N. Chmukh, Radiation solidification of unsaturated oligoesters irradiated by nanosecond high-current electron beams, Cand. Chem. Sci. Diss., Tomsk (1983).

  56. 56.

    T. V. Chizh, N. N. Loy, A. N. Pavlov, and M. S. Vorobyov, IOP J. Phys.: Conf. Ser., 1115, 022025 (2018).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. N. Koval.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No.10, pp. 7–16, October, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koval, N.N., Devyatkov, V.N. & Vorobyev, M.S. Electron Sources with Plasma Grid Emitters: Progress and Prospects. Russ Phys J (2021). https://doi.org/10.1007/s11182-021-02219-3

Download citation

Keywords

  • plasma grid emitter
  • pulsed electron source
  • electron beam formation and transportation
  • material surface modification by a pulsed electron beam
  • electron beam put into the atmosphere
  • work-hardening technologies
  • radiation technologies