Diffraction-Ray Optics of Femtosecond Laser Pulses Propagating in Air Under the Influence of the Normal Group Velocity Dispersion

Results of theoretical study of the femtosecond Ti:Sa laser pulse propagation in air under the influence of the normal group velocity dispersion are presented. The use of the diffraction-ray tube method for an analysis of numerical solutions of the nonlinear Schrödinger equation in chromatic dispersion medium with the Kerr and plasma nonlinearity makes it possible to determine the main regularities of the femtosecond laser pulse selffocusing and filamentation in air for various pulse durations, initial beam radii, and peak powers. It is shown that under the influence of the group velocity dispersion, the filamentation terminates with an increase in the initial radius of the laser beam even at high values of supercritical powers. With an increase in the dispersion distortions of the pulse, the radius of the energetically replenishing diffraction-ray tube, the angular divergence of the post-filamentation light channel, and the nonlinear focus coordinate normalized to the Rayleigh length increase in the central time slices of the laser pulse and its integral pattern.

This is a preview of subscription content, access via your institution.


  1. 1.

    Yu. E. Geints, A. A. Zemlyanov, A. М. Kabanov, and G. G. Matvienko, Nonlinear Femtosecond Atmospheric Optics [in Russian], Publishing House of the IAO SB RAS, Tomsk (2010).

    Google Scholar 

  2. 2.

    R. W. Boyd, S. G. Lukishova, and Y. R. Shen, eds., Self-Focusing: Past and Present. Fundamentals and Prospects, Springer, Berlin (2009).

    Google Scholar 

  3. 3.

    P. Polynkin and M. Kolesik, Phys. Rev. A, 87, 053829-1–053829-5 (2013).

    ADS  Article  Google Scholar 

  4. 4.

    P. Chernev and V. Petrov, Opt. Lett., 17, No. 3, 172–174 (1992).

    ADS  Article  Google Scholar 

  5. 5.

    W. Liu and S. L. Chin, Opt. Express, 13, No. 15, 5750–5755 (2005).

    ADS  Article  Google Scholar 

  6. 6.

    L. Berge, S. Mauger, and S. Skupin, Phys. Rev. A, 81, 013817-1–013817-10 (2010).

    ADS  Google Scholar 

  7. 7.

    J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, Phys. Rev. Lett., 77, No. 18, 3783–3786 (1996).

    ADS  Article  Google Scholar 

  8. 8.

    Yu. E. Geints and A. A. Zemlyanov, Opt. Atm. Okeana, 23, No. 9, 749–756 (2010).

    Google Scholar 

  9. 9.

    V. E. Zuev, A. A. Zemlyanov, and Yu. D. Kopytin, Nonlinear Optics of the Atmosphere [in Russian], Gidrometeoizdat, Leningrad (1989).

    Google Scholar 

  10. 10.

    A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, Opt. Atm. Okeana, 24, No. 10, 839–847 (2011).

    Google Scholar 

  11. 11.

    Yu. E. Geints, O. V. Minina, and A. A. Zemlyanov, J. Opt. Soc. Am. B, 36, No. 11, 3209–3217 (2019).

    ADS  Article  Google Scholar 

  12. 12.

    A. A. Zemlyanov, Yu. E. Geints, and O. V. Minina, Opt. Atm. Okeana, 32, No. 8, 601–608 (2019).

    Google Scholar 

  13. 13.

    Yu. E. Geints, A. A. Zemlyanov, and O. V. Minina, Opt. Atm. Okeana, 31, No. 5, 364–371 (2018).

    Google Scholar 

  14. 14.

    D. V. Apeksimov, Yu. E. Geints, A. A. Zemlyanov, et al., Filamentation of Femtosecond Laser Pulses in Air [in Russian], Publishing House of IAO SB RAS,Tomsk (2017).

  15. 15.

    A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Zh. Eksp. Teor. Fiz., 50, 1393–1397 (1966).

    Google Scholar 

  16. 16.

    A. D. Bulygin and O. V. Minina, Izv. Vyssh. Uchebn. Zaved., Fiz., 58, No. 8/2, 209–211 (2015).

    Google Scholar 

  17. 17.

    A. A. Zemlyanov, A. D. Bulygin, Yu. E. Geints, and O. V. Minina, Opt. Atm. Okeana, 29, No. 5, 359–368 (2016).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yu. E. Geints.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 157–164, September, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geints, Y.E., Zemlyanov, A.A. & Minina, O.V. Diffraction-Ray Optics of Femtosecond Laser Pulses Propagating in Air Under the Influence of the Normal Group Velocity Dispersion. Russ Phys J 63, 1622–1630 (2021). https://doi.org/10.1007/s11182-021-02214-8

Download citation


  • femtosecond laser pulses
  • self-focusing
  • filamentation
  • diffraction-ray tube
  • group velocity dispersion