Computer Simulation of Spin Filtration Properties of Zigzag-Edged Octagraphene Nanoribbon Saturated with Hydrogen Atoms

The paper deals with the properties of octagraphene nanoribbon determined in terms of the local spin density approximation and nonequilibrium Green’s function, namely transmission spectra, current–voltage characteristics (I–V curves), and differential conductivity of the zigzag-edged octagraphene nanoribbon obtained after the removal of carbon atoms from its center and saturation with hydrogen atoms. The I–V curves are characterized by a section with negative differential resistance caused by the resonant-tunneling of quasiparticles. The dI/dV curve shows similar changes. It is found that in the zigzag-edged octagraphene nanoribbon (with the network consisting of hexagons and a carbon bridge), spin-down quasiparticles are blocked in the energy range from –1.65 to –0.5 eV. This behavior of the transmission spectrum allows octagraphene nanoribbons to be applied in creation of energy spin filters. It is shown that the spin-polarized current in zigzag-edged octagraphene nanoribbon (with the network consisting of pentagons and a carbon bridge) with spin-up quasiparticles significantly exceeds the current in that with spin-up and spin-down quasiparticles. This effect allows the selection of spin-up quasiparticles at a certain voltage applied. The obtained results can be useful in the new developments of spintronic devices.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. K. Likharev, Physica C, 482, 6–18 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    J. H. Hinken, Superconductor Electronics: Fundamentals and Microwave Applications. Springer Verlag, Berlin; Heidelberg (1989).

  3. 3.

    D. M. Sergeyev, Russ. Phys. J., 59, No. 3, 456–465 (2016).

    Article  Google Scholar 

  4. 4.

    Y. Kanbur, M. Irimia-Vladu, E. D. Głowacki, et al., Organic Electronics, 13, 919–924 (2012).

    Article  Google Scholar 

  5. 5.

    Z. Bao and J. Locklin, Organic Field-Effect Transistors, CRC Press, New York (2007).

    Google Scholar 

  6. 6.

    J. C. Cuevas and E. Scheer, Molecular Electronics: an Introduction to Theory and Experiment, World Scientific (2017).

  7. 7.

    D. V. Averin and K. K. Likharev, J. Low. Temp. Phys., 62, 345–373 (1986).

    ADS  Article  Google Scholar 

  8. 8.

    K. K. Likharev, Proc. IEEE Inst. Electr. Electron. Eng., 87, No 4, 606–632 (1999).

  9. 9.

    N. V. Volkov, Phys. Usp., 55, No. 3, 250–269 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    A. Fert, Rev. Mod. Phys., 80, 1517–1530 (2008).

    ADS  Article  Google Scholar 

  11. 11.

    P. A. Grünberg, Rev. Mod. Phys., 80, 1531–1540 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    A. A. Kiselev and K. W. Kim, Appl. Phys. Lett., 78, 775–777 (2001).

    ADS  Article  Google Scholar 

  13. 13.

    D. Kang, B. Wang, C. Xia, and H. Li, Nanoscale Res. Lett., 12, 357 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    X.-L. Sheng, H.-J. Cui, F. Ye, et al., J. Appl. Phys., 112, 074315 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    D. W. Brenner, O. A. Shenderova, J. A. Harrison, et al., J. Phys. Condens. Matter., 14, 783–802 (2002).

    ADS  Article  Google Scholar 

  16. 16.

    K. Momma and F. Izumi, J. Appl. Crystallogr., 41, 653–658 (2008).

    Article  Google Scholar 

  17. 17.

    A. I. Podlivaev and L. A. Openov, Phys. Solid State, 57, No. 4, 820–824 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    D. Sergeyev, J. Nano- Electron. Phys., 10, No. 3, 03018 (2018).

    Article  Google Scholar 

  19. 19.

    M. Brandbyge, J.-L. Mozos, P. Ordejon, et al., Phys. Rev. B, 65, 165401 (2002).

    ADS  Article  Google Scholar 

  20. 20.

    S. Datta, Nanotechnology, 15, S433–S451 (2004).

    ADS  Article  Google Scholar 

  21. 21.

    N. P. Guisinger, M. E. Greene, R. Basu, et al., Nano Lett., 4, 55–59 (2004).

    ADS  Article  Google Scholar 

  22. 22.

    T. Rakshit, G.Ch. Liang, A. W. Ghosh, et al., Nano Lett., 4, 1803–1807 (2004).

    ADS  Article  Google Scholar 

  23. 23.

    E. M. Balashov, B. A. Budanov, F. I. Dalidchik, and S. A. Kovalevskii, JETP Letters, 101, No. 9, 643–647 (2015).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to D. M. Sergeyev or L. N. Myasnikova or K. Sh. Shunkeyev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 110–116, February, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sergeyev, D.M., Myasnikova, L.N. & Shunkeyev, K.S. Computer Simulation of Spin Filtration Properties of Zigzag-Edged Octagraphene Nanoribbon Saturated with Hydrogen Atoms. Russ Phys J 63, 303–310 (2020). https://doi.org/10.1007/s11182-020-02036-0

Download citation

Keywords

  • octagraphene
  • spin-dependent transport
  • spin filter
  • current–voltage characteristic
  • differential conductivity
  • transmission spectrum