Morphology, Structure, and Optical Properties of SnO (x) Films

The paper presents the morphological, structural, and optical properties of nanostructured SnO (x) films obtained by molecular beam epitaxy using deposition of tin in an oxygen flux on an oxidized silicon substrate as a function of the annealing temperature of the synthesized structure. The effect of annealing temperature on the structural and phase state of the films is established. The orthorhombic phase of SnO2 was observed after annealing in air at 500°C. An increase in the annealing temperature up to 800°C leads to the appearance of small fraction of the tetragonal phase of SnO2. The effect of the crystal structure on the optical properties of tin oxide films is shown. Ellipsometry revealed a sharp change in the optical constants of the film near the annealing temperature of 500°C. The observed wide absorption band in the range 1.9–3.4 eV is apparently associated with small (approximately 1%) amount of unoxidized metal Sn clusters. Photoluminescence in a wide range of 450–850 nm with a maximum at ~600 nm is observed. An increase in the annealing temperature from 500 to 800°С leads to an increase in the PL intensity by almost a factor of 6.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films, 102, 1–46 (1983).

    ADS  Article  Google Scholar 

  2. 2.

    T. J. Coutts, D. L. Young, and X. Li, MRS Bull., 25, 58–65 (2000).

    Article  Google Scholar 

  3. 3.

    J. Sun, A. Lu, L. Wang, et al., Nanotechnology, 20, 335204 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    E. Elangovan, M. P. Singh, M. S. Dharmaprakash, and K. Ramamurthi, J. Optoelectron. Adv. Mater., 6, 197–203 (2004).

    Google Scholar 

  5. 5.

    H. S. So, J.-W. Park, D. H. Jung, et al., J. Appl. Phys., 118, 085303 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    M. Batzill and U. Diebold, Prog. Surf. Sci., 79, No. 47, 154 (2005).

    Google Scholar 

  7. 7.

    R. E. Presley, C. L. Munsee, C.-H. Park, et al., J. Phys. D, 37, 2810–2813 (2004).

    ADS  Article  Google Scholar 

  8. 8.

    D. P. Joseph, P. Renugambal, M. Saravanan, et al., Thin Solid Films, 517, 6129–6136 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Q.-H. Wu, J. Song, J. Kang, et al., Mater. Lett., 61, 3679–3684 (2007).

    Article  Google Scholar 

  10. 10.

    Y. Kim, J. H. Jang, J. S. Kim, et al., Mater. Sci. Eng. B, 177, 1470–1475 (2012).

    Article  Google Scholar 

  11. 11.

    M. Batzill, J. M. Burst, and U. Diebold, Thin Solid Films, 484, 132–139 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    H. Kim and A. Piqué, Appl. Phys. Lett., 84, 218–220 (2004).

    ADS  Article  Google Scholar 

  13. 13.

    E. Kh. Shokr, M. M. Wakkad, H. A. Abd El-Ghanny, and H. M. Ali, J. Phys. Chem. Solids, 61, 75–85 (2000).

    ADS  Article  Google Scholar 

  14. 14.

    J. Ma, Y. Wang, F. Ji, et al., Mater. Lett., 59, 2142–2145 (2005).

    Article  Google Scholar 

  15. 15.

    J. C. Li and H. L. Yuan, Cryst. Res. Technol., 52, 1700183 (2017).

    Article  Google Scholar 

  16. 16.

    R. Sethi, S. Ahmad, A. Aziz, and A. M. Siddiqui, Adv. Mater. Radiat. Physics (AMRP-2015), 1675, 030039 (2015).

  17. 17.

    L. Y. Liang, Z. M. Liu, H. T. Cao, and X. Q. Pan, ACS Appl. Mater. Interfac., 2, 1060–1065 (2010).

    Article  Google Scholar 

  18. 18.

    H. Hosono, Y. Ogo, H. Yanagi, and T. Kamiya, Electrochem. Solid-State Lett., 14, H13–H16 (2011).

    Article  Google Scholar 

  19. 19.

    H. Yabuta, N. Kaji, R. Hayashi, et al., Appl. Phys. Lett., 97, 072111 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    X. Du, Y. Du, and S. M. George, J. Vacuum Sci. Technol. A: Vacuum, Surfaces, and Films, 23, 581–588 (2005).

    Google Scholar 

  21. 21.

    A. Huda, C. T. Handoko, M. D. Bustan, et al., Mater. Lett., 211, 293–295 (2018).

    Article  Google Scholar 

  22. 22.

    E. V. Spesivtsev, S. V. Rykhlitskii, and V. A. Shvets, Optoelectron., Instrum. Data Process., 47, No. 5, 419–425 (2017).

    Article  Google Scholar 

  23. 23.

    Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, J. Phys. Chem. B, 106, 12741279 (2002).

    Google Scholar 

  24. 24.

    Z. Galazka, R. Uecker, D. Klimm, et al., Phys. Status Solidi A, 211, No. 1, 6673 (2014).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. I. Nikiforov or V. A. Timofeev or V. I. Mashanov or I. A. Azarov or I. D. Loshkarev or I. V. Korol’kov or T. A. Gavrilova or M. Yu. Esin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 85–90, February, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, A.I., Timofeev, V.A., Mashanov, V.I. et al. Morphology, Structure, and Optical Properties of SnO (x) Films. Russ Phys J 63, 276–281 (2020). https://doi.org/10.1007/s11182-020-02032-4

Download citation

Keywords

  • tin oxide
  • epitaxy
  • nanostructures
  • X-ray diffraction
  • absorption coefficient