Peculiarities of Structure and Morphology of Copper-Cerium Nanopowders Produced by Laser Ablation

Copper-cerium nanopowders CuOx–CeO2 (mass ratio Cu:Ce = 6:100) are prepared by mixing the dispersions of the copper and cerium oxides produced by the method of pulse laser ablation (PLA) in liquid, followed by drying. The initial dispersions of copper oxides were prepared by the method of PLA of a metal copper target in distilled water or 1% hydrogen peroxide solution, and those of cerium oxide – by PLA of metal cerium in distilled water. It is shown that ablation of copper in water and water solution of peroxide is followed by the formation of copper oxide particles of different morphologies and compositions (structure). It is established that no crystal phases of copper oxides are formed in the copper-cerium nanopowders produced from separate dispersions. Given this approach to forming copper-cerium nanoparticles, the oxidized copper is distributed in the form of a thin layer on the CeO2 surface, which is demonstrated by the results of investigation of these particles by the methods of high-resolution transmission electron microscopy and X-ray diffraction. The formation of a Cu–O–Ce interface at the interphase boundary gives rise to the formation of defects on the CeO2 surface, which is confirmed by the Raman spectroscopy. An investigation of the composition and electronic structure of the surface of CuOx nanoparticles and CuOx–CeO2 nanopowders performed by the method of X-ray photoelectronic spectroscopy reveals the presence of copper in the form of a combination of Cu (I) and Cu (II) with the prevailing contribution from a single-valence state for CuOx–CeO2 nanopowders, which could have resulted from the interaction between CuOx and CeO2 particles.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Neddersen, G. Chumanov, and T. M. Cotton, Appl. Spectrosc., 47, 1959–1964 (1993).

    ADS  Article  Google Scholar 

  2. 2.

    A.P. Wanninayake, S. Gunashekar, S. Li, et al., Semicond. Sci. Technol., 30 (064004), 1–7 (2015).

    Google Scholar 

  3. 3.

    K. Mikami, Y. Kido, Y. Akaishi, et al., Sensors, 19 (211), 1–14 (2019).

    Google Scholar 

  4. 4.

    A. V. Shabalina, V. A. Svetlichnyi, K. A. Ryzhinskaya, et al., Anal. Sci., 33 (12), 1415–1419 (2017).

    Article  Google Scholar 

  5. 5.

    A. D. Badaraev, A. L. Nemoykina, E. N. Bolbasov, et al., Resource-Efficient Technol3 (2), 204–211 (2017).

    Google Scholar 

  6. 6.

    V. A. Svetlichnyi, D. A. Goncharova, A. V. Shabalina, et al., Nano Hybr. Compos., 13, 75–81 (2017).

    Article  Google Scholar 

  7. 7.

    D. A. Svintsitskiy, T. Y. Kardash, O. A. Stonkus, et al., J. Phys. Chem. C, 117, 14588−14599 (2013).

    Article  Google Scholar 

  8. 8.

    A. Gil, P. Ruiz, and B. Delmon, J. Catal., 159 (2), 496–499 (1996).

    Article  Google Scholar 

  9. 9.

    J. Cunningham, G. H. Al-Sayyed, J. A. Cronin, et al., J. Catal., – 1986. – V. 102 (1), 160–171 (1986).

  10. 10.

    D. F. Cox and K. H. Schulz, J. Vac. Sci. Technol. A, 8 (3), 2599–2604 (1990).

    ADS  Google Scholar 

  11. 11.

    N. Pasha, N. Lingaiah, P. Siva Sankar Reddy, et al., Catal. Lett., 127 (1),101–106 (2009).

    Article  Google Scholar 

  12. 12.

    M. Jabłońska, M. Nocuń, K. Gołąbek, et al., Appl. Surf. Sci., 423, 498–508 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    J. Laine, J. Brito, F. Severino, et al., Catal. Lett., 5 (1), 45–54 (1990).

    Article  Google Scholar 

  14. 14.

    A. J. Elliott, R. A. Hadden, J. Tabatabaei, et al., J. Catal., 157 (1), 153–161 (1995).

    Article  Google Scholar 

  15. 15.

    A. Martinez-Arias, D. Gamarra, M. Fernandez-Garcia, et al., Catal. Today, 143 (3), 211–217 (2009).

    Article  Google Scholar 

  16. 16.

    W.-W. Wang, W.-Z. Yu, P.-P. Du, et al., ACS Catal., 7 (2), 1313–1329 (2017).

    Article  Google Scholar 

  17. 17.

    W. Shan, Z. Feng, Z. Li, et al., J. Catal., 228 (1), 206–217 (2004).

    Article  Google Scholar 

  18. 18.

    D. Gamarra, G. Munuera, A. B. Hungría, et al., J. Phys. Chem. C, 111 (29), 11026–11038 (2007).

    Article  Google Scholar 

  19. 19.

    S. T. Hossain, E. Azeeva, K. Zhang, et al., Appl. Surf. Sci., 455, 132–143 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    H. Zeng, X.-W. Du, S. C. Singh, et al., Adv. Funct. Mater., 22, 1333–1353 (2012).

    Article  Google Scholar 

  21. 21.

    D. Zhang, B. Gökce, and S. Barcikowski, Chem. Rev., 117 (5), 3990–4103 (2017).

    Article  Google Scholar 

  22. 22.

    S. Reichenberger, G. Marzun, M. Muhler, et al., Chem. Cat. Chem., 11 (18), 4489–4518 (2019).

    Google Scholar 

  23. 23.

    A. Nath, P. Sharma, and A. Khare, Laser Phys. Lett., 15 (026001), 1–9 (2018).

    Google Scholar 

  24. 24.

    D. Zhang, J. Liu, P. Li, et al., Chem. Nano Mat., 3, 512–533 (2017).

    Google Scholar 

  25. 25.

    V. A. Svetlichnyi and I. N. Lapin, Russ. Phys. J., 58, No. 11, 1598–1604 (2015).

    Article  Google Scholar 

  26. 26.

    D. A. Goncharova, I. N. Lapin, E. S. Saveliev, et al., Russ. Phys. J., 60, No. 7, 1197–1205 (2017).

    Article  Google Scholar 

  27. 27.

    NIST X-ray Photoelectron Spectroscopy Database, version 4.1; National Institute of Standards and Technology: Gaithersburg, MD, 2012; http://srdata.nist.gov/xps/.

  28. 28.

    D. A. Goncharova, T. S. Kharlamova, V. A. Svetlichnyi, et al., J. Phys. Chem. С, 123 (35), 21731–21742 (2019).

    Google Scholar 

  29. 29.

    E. M. Slavinskaya, T.Yu. Kardash, R. V. Gulyaev, et al., Catal. Sci. Technol., 6 (17), 6650–6666 (2016).

    Article  Google Scholar 

  30. 30.

    W. Shan, Z. Feng, Z. Li, et al., J. Catal., 228 (1), 206–217 (2004).

    Article  Google Scholar 

  31. 31.

    B. K. Meyer, A. Polity, D. Reppin, et al., Phys. Status Solidi B, 249 (8), 1487–1509 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, et al., J. Phys. Chem. С, 116, 10232–10237 (2012).

    Google Scholar 

  33. 33.

    S. Sun, D. Mao, J. Yu, et al., Catal. Sci. Technol., 5 (6), 3166–3181 (2015).

    Article  Google Scholar 

  34. 34.

    S. Agarwal, X. Zhu, E. J. M. Hensen, et al., J. Phys. Chem. С, 118 (8), 4131– 4142 (2014).

    Google Scholar 

  35. 35.

    D. B. Pedersen, S. Wang, and S. H. Liang, J. Phys. Chem. C, 112 (24), 8819–8826 (2008).

    Google Scholar 

  36. 36.

    M. Yin, C.-K. Wu, Y. Lou, et al., J. Am. Chem. Soc., 127 (26), 9506–9511 (2005).

    Article  Google Scholar 

  37. 37.

    K. Borgohain, N. Murase, and S. Mahamuni, J. Appl. Phys., 92 (3), 1292–1297 (2002).

    Google Scholar 

  38. 38.

    P. W. Baumeister, Phys. Rev., 121, 359–362 (1961).

    ADS  Article  Google Scholar 

  39. 39.

    S. De Tavernier and R. A. Schoonheydt, Zeolites, 11 (2), 155–163 (1991).

    Article  Google Scholar 

  40. 40.

    A. Bensalem, J. C. Muller, and F. Bozon-Verduraz, J. Chem. Soc. Faraday Trans., 88 (1), 153–154 (1992).

    Article  Google Scholar 

  41. 41.

    D. A. Svintsitskiy, A. P. Chupakhin, E. M. Slavinskaya, et al., J. Mol. Catal. A Chem., 368369, 95–106 (2013).

  42. 42.

    N. Pauly, S. Tougaard, and F. Yubero, Surf. Sci., 620, 17–22 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    D. A. Svintsitskiy, A. I. Stadnichenko, D. V. Demidov, et al., Appl. Surf. Sci., 257, 8542–8549 (2011).

    ADS  Article  Google Scholar 

  44. 44.

    D. A. Svintsitskiy, T. Y. Kardash, E. M. Slavinskaya, et al., Appl. Surf. Sci., 427, 363–374 (2018).

    ADS  Article  Google Scholar 

  45. 45.

    C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, et al., Natl. Inst. Stand. Technol., Gaithersburg (2003).

  46. 46.

    J. F. Moulder, W. F. Stickle, P. E. Sobol, et al., Perkin-Elmer Corp, Eden Prairie, Minnesota, USA (1992).

    Google Scholar 

  47. 47.

    D. A. Svintsitskiy, L. S. Kibis, A. I. Stadnichenko, et al., Kinet. Catal., 54, 497–504 (2013).

    Article  Google Scholar 

  48. 48.

    G. Schon, Surf. Sci., 35, 96–108 (1973).

    ADS  Article  Google Scholar 

  49. 49.

    D. A. Svintsitskiy, E. M. Slavinskaya, T. Y. Kardash, et al., Appl. Catal. A. Gen., 510, 64–73 (2016).

    Article  Google Scholar 

  50. 50.

    L. S. Kibis, D. A. Svintsitskiy, T. Y. Kardash, et al., Appl. Catal. A. Gen., 570, 51–61 (2019).

    Article  Google Scholar 

  51. 51.

    M. M. Zyryanova, P. V. Snytnikov, R. V. Gulyaev, et al., Chem. Eng. J., 238, 189–197 (2014).

    Article  Google Scholar 

  52. 52.

    Y. Liu, Q. Fu, and M. F. Stephanopoulos, Catal. Today, 9395, 241–246 (2004).

  53. 53.

    W. Liu and M. F. Stephanopoulos, Chem. Eng. J. Biochem. Eng. J., 64, 283–294 (1996).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. A. Goncharova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 135–143, January, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goncharova, D.A., Svintsitskiy, D.A., Stonkus, O.A. et al. Peculiarities of Structure and Morphology of Copper-Cerium Nanopowders Produced by Laser Ablation. Russ Phys J 63, 150–159 (2020). https://doi.org/10.1007/s11182-020-02014-6

Download citation

Keywords

  • copper oxide
  • copper-cerium nanopowders
  • pulse laser ablation
  • nanoparticles
  • X-ray photoelectronic spectroscopy
  • Raman spectroscopy