Skip to main content
Log in

Special Features of Parasitic Current Formation in a Sealed-Off Cold-Cathode Thyratron with Trigger Unit Based On an Auxiliary Glow Discharge

  • Published:
Russian Physics Journal Aims and scope

Results of investigation of the glow discharge with hollow cathode and ring anode in the trigger unit of a coldcathode thyratron TPI1-10k/50 are presented. A specific feature of the discharge sustainment is that a highly emissive tablet containing cesium carbonate is placed in the cathode cavity. The current-voltage characteristics of the discharge in the trigger unit are obtained for different tablet compositions together with the measured parasitic current to the main cathode cavity. Stepwise transitions to the regime with decreased discharge burning voltage accompanied by an increase in the parasitic current are observed. A model of current sustainment in a hollow-cathode glow discharge is used to interpret the characteristics obtained. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only the ion bombardment of the cathode, but also the emission current from an external source. Based on estimations of the discharge parameters in the trigger unit, a reason for a parasitic current increase is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. D. Korolev and N. N. Koval, J. Phys. D, 51, No. 32, 323001 (2018).

    Article  Google Scholar 

  2. R. P. Lamba, V. Pathania, B. L. Meena, et al., Rev. Sci. Instrum., 86, 103508 (2015).

    Article  ADS  Google Scholar 

  3. J. Q. Yan, S. K. Shen, Y. A. Wang, et al., Rev. Sci. Instrum., 89, No. 6, 065102 (2018).

    Article  ADS  Google Scholar 

  4. K. Frank and J. Christiansen, IEEE Trans. Plasma Sci., 17, No. 5, 748–753 (1989).

    Article  ADS  Google Scholar 

  5. A. V. Kozyrev, Y. D. Korolev, V. G. Rabotkin, and I. A. Shemyakin, J. Appl. Phys., 74, No. 9, 5366–5371 (1993).

    Article  ADS  Google Scholar 

  6. M. Lin, H. Liao, M. Liu, et al., J. Instrum., 13, 04004 (2018).

    Google Scholar 

  7. K. Bergmann, J. Vieker, and A. Wezyk, J. Appl. Phys., 120, No. 14, 143302 (2016).

    Article  ADS  Google Scholar 

  8. X. T. Cao, J. Hu, R. X. Zhang, et al., AIP Adv., 7, No. 11, 115005 (2017).

    Article  ADS  Google Scholar 

  9. N. Kumar, D. K. Pal, A. S. Jadon, et al., Rev. Sci. Instrum., 87, No. 3, 033503 (2016).

    Article  ADS  Google Scholar 

  10. J. Zhang and X. Liu, Phys. Plasmas, 25, No. 1, 013533 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Zhang and X. Liu, IEEE Trans. Dielectr. Electr. Insul., 24, No. 4, 2050–2055 (2017).

    Article  Google Scholar 

  12. Y. D. Korolev, N. V. Landl, V. G. Geyman, and O. B. Frants, Phys. Plasmas, 25, No. 11, 113510 (2018).

    Article  ADS  Google Scholar 

  13. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., Phys. Plasmas, 24, No. 10, 0103526 (2017).

    Article  ADS  Google Scholar 

  14. Y. D. Korolev, Rus. J. Gen. Chem., 85, No. 5, 1311–1325 (2015).

    Article  Google Scholar 

  15. Y. D. Korolev, O. B. Frants, N. V. Landl, and A. I. Suslov, IEEE Trans. Plasma Sci., 40, No. 11, 2837–2842 (2012).

    Article  ADS  Google Scholar 

  16. N. V. Landl, Y. D. Korolev, V. G. Geyman, and O. B. Frants, Russ. Phys. J., 60, No. 8, 1269 (2017).

    Article  Google Scholar 

  17. V. D. Bochkov, A. V. Kolesnikov, Y. D. Korolev, et al., IEEE Trans. Plasma Sci., 23, No. 3, 341–346 (1995).

    Article  ADS  Google Scholar 

  18. J. Zhang, X. Li, Y. Liu, et al., Phys. Plasmas, 23, No. 12, 123525 (2016).

    Article  ADS  Google Scholar 

  19. T. Mehr, H. Arentz, P. Bickel, et al., IEEE Trans. Plasma Sci., 23, 324–329 (1995).

    Article  ADS  Google Scholar 

  20. V. D. Bochkov, V. M. Dyagilev, V. G. Ushich, et al., IEEE Trans. Plasma Sci., 29, No. 5, 802–808 (2001).

    Article  ADS  Google Scholar 

  21. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., IEEE Trans. Plasma Sci., 43, No. 8, 2349–2353 (2015).

    Article  ADS  Google Scholar 

  22. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 44, No. 1, 110 (2018).

    Article  ADS  Google Scholar 

  23. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 42, No. 8, 799 (2016).

    Article  ADS  Google Scholar 

  24. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., 41, No. 8, 2087 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Landl.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 172–181, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landl, N.V., Korolev, Y.D., Geyman, V.G. et al. Special Features of Parasitic Current Formation in a Sealed-Off Cold-Cathode Thyratron with Trigger Unit Based On an Auxiliary Glow Discharge. Russ Phys J 62, 1279–1288 (2019). https://doi.org/10.1007/s11182-019-01845-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01845-2

Keywords

Navigation