Skip to main content
Log in

Role of Prebreakdown Currents in a Static Breakdown of a Two-Sectioned Cold-Cathode Thyratron

  • Published:
Russian Physics Journal Aims and scope

The data on prebreakdown currents and static breakdown voltages measured in two-sectioned sealed-off thyratron with a cold cathode TPI1-10k/50 are presented. The temporal behavior of the anode voltage and of the voltage at the separate sections has been investigated at the prebreakdown and breakdown stages. It is demonstrated that the prebreakdown current presented in the separate sections causes redistribution of the anode voltage between the sections. Due to this effect, a maximum thyratron breakdown voltage can be obtained. The other method to increase the breakdown voltage is based on the forced distribution of the anode voltage between the sections using a capacitive divider. Special features of transition from the prebreakdown to breakdown current are discussed for different thyratron-switching circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. D. Korolev and N. N. Koval, J. Phys. D, 51, No. 32, 323001 (2018).

    Article  Google Scholar 

  2. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Phys. Plasmas, 25, No. 11, 113510 (2018).

    Article  ADS  Google Scholar 

  3. Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 44, No. 1, 110–117 (2018).

    Article  ADS  Google Scholar 

  4. Y. D. Korolev, N. D. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 42, No. 8, 799–807 (2016).

    Article  ADS  Google Scholar 

  5. J. Q. Yan, S. K. Shen, Y. A. Wang, et al., Rev. Sci. Instrum., 89, No. 6, 065102 (2018).

    Article  ADS  Google Scholar 

  6. N. V. Voitenko, A. S. Yudin, N. S. Kuznetsova, et al., J. Phys.: Conf. Ser., 652, 012059 (2015).

    Google Scholar 

  7. X. T. Cao, J. Hu, R. X. Zhang, et al., AIP Adv., 7, No. 11, 115005 (2017).

    Article  ADS  Google Scholar 

  8. N. Kumar, D. K. Pal, A. S. Jadon, et al., Rev. Sci. Instrum., 87, No. 3, 033503 (2016).

    Article  ADS  Google Scholar 

  9. J. Zhang and X. Liu, Phys. Plasmas, 25, No. 1, 013533 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Zhang and X. Liu, IEEE Trans. Dielectr. Electr. Insul., 24, No. 4, 2050–2055 (2017).

    Article  Google Scholar 

  11. K. Frank and J. Christiansen, IEEE Trans. Plasma Sci., 17, No. 5, 748–753 (1989).

    Article  ADS  Google Scholar 

  12. R. Frank, E. Boggasch, J. Christiansen, et al., IEEE Trans. Plasma Sci., 16, No. 2, 317–323 (1988).

    Article  ADS  Google Scholar 

  13. T. Mehr, H. Arentz, P. Bickel, et al., IEEE Trans. Plasma Sci., 23, No. 8, 324–329 (1995).

    Article  ADS  Google Scholar 

  14. P. Bickel, J. Christiansen, K. Frank, et al., IEEE Trans. Electron Devices, 38, No. 4, 712–716 (1991).

    Article  ADS  Google Scholar 

  15. K. Frank, E. Dewald, C. Bickes, et al., IEEE Trans. Plasma Sci., 27, No. 4, 1008–1020 (1999).

    Article  ADS  Google Scholar 

  16. R. P. Lamba, V. Pathania, B. L. Meena, et al., Rev. Sci. Instrum., 86, No. 10, 103508 (2015).

    Article  ADS  Google Scholar 

  17. A. V. Kozyrev, Y. D. Korolev, V. G. Rabotkin, and I. A. Shemyakin, J. Appl. Phys., 74, No. 9, 5366–5371 (1993).

    Article  ADS  Google Scholar 

  18. M. Lin, H. Liao, M. Liu, et al., J. Instrum., 13, 04004 (2018).

    Google Scholar 

  19. K. Bergmann, J. Vieker, and A. Wezyk, J. Appl. Phys., 120, No. 14, 143302 (2016).

    Article  ADS  Google Scholar 

  20. N. V. Landl, Yu. D. Korolev, V. G. Geyman, et al., Russ. Phys. J., 60, No. 8, 1269–1276 (2017).

    Article  Google Scholar 

  21. N. V. Landl, Yu. D. Korolev, V. G. Geyman, and O. B. Frants, Russ. Phys. J., 60, No. 8, 1277–1284 (2017).

    Article  Google Scholar 

  22. J. Zhang, X. T. Liu, and Q. G. Zhang, Phys. Plasmas, 24, No. 5, 053515 (2017).

    Article  ADS  Google Scholar 

  23. V. D. Bochkov, V. M. Dyagilev, V. G. Ushich, et al., IEEE Trans. Plasma Sci., 29, No. 5, 802–808 (2001).

    Article  ADS  Google Scholar 

  24. R. P. Lamba, U. N. Pal, B. L. Meena, and R. Prakash, Plasma Sources Sci. Technol., 27, No. 3, 035003 (2018).

    Article  ADS  Google Scholar 

  25. Y. D. Korolev, O. B. Frants, N. V. Landl, et al., Phys. Plasmas, 24, No. 10, 0103526 (2017).

    Article  ADS  Google Scholar 

  26. Y. D. Korolev, Rus. J. Gen. Chem., 85, No. 5, 1311–1325 (2015).

    Article  Google Scholar 

  27. Y. D. Korolev, O. B. Frants, N. V. Landl, and A. I. Suslov, IEEE Trans. Plasma Sci., 40, No. 11, 2837–2842 (2012).

    Article  ADS  Google Scholar 

  28. V. D. Bochkov, A. V. Kolesnikov, Y. D. Korolev, et al., IEEE Trans. Plasma Sci., 23, No. 3, 341–346 (1995).

    Article  ADS  Google Scholar 

  29. J. Zhang, X. Li, Y. Liu, et al., Phys. Plasmas, 23, No. 12, 123525 (2016).

    Article  ADS  Google Scholar 

  30. A. V. Akimov, P. V. Logachev, V. D. Bochkov, et al., IEEE Trans. Dielectr. Electr. Insul., 17, No. 3, 716–720 (2010).

    Article  Google Scholar 

  31. A. V. Akimov, V. E. Akimov, P. A. Bak, et al., Instrum. Exp. Tech., 55, No. 2, 218–224 (2012).

    Article  Google Scholar 

  32. P. V. Logachev, G. I. Kuznetsov, A. A. Korepanov, et al., Instrum. Exp. Tech., 56, No. 6, 672–679 (2013).

    Article  Google Scholar 

  33. J. Zhang and X. Liu, Phys. Plasmas, 25, No. 1, 013533 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Zhang, L. Quan, J. Gong, et al., IEEE Trans. Plasma Sci., 47, No. 1, 832–836 (2019).

    Article  ADS  Google Scholar 

  35. Yu. S. Akishev, G. I. Aponin, M. E. Grishin, et al., Plasma Phys. Rep., 33, No. 7, 584–601 (2007).

    Article  ADS  Google Scholar 

  36. Yu. S. Akishev, A. A. Balakirev, V. B. Karal’nik, et al., Russ. Phys. J., 60, No. 8, 1341–1345 (2017).

    Article  Google Scholar 

  37. K. Frank, Y. D. Korolev, and A. I. Kuzmichev, IEEE Trans. Plasma Sci., 30, No. 1, 357–362 (2002).

    Article  ADS  Google Scholar 

  38. A. I. Ryabchikov, I. A. Ryabchikov, I. B. Stepanov, and Y. P. Usov, Surf. Coat. Tech., 201, No. 15, 6523–6525 (2007).

    Article  Google Scholar 

  39. N. P. Kondrat’eva, N. N. Koval, Y. D. Korolev, and P. M. Schanin, J. Phys. D, 32, No. 6, 699–705 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Korolev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 162–171, July, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, Y.D., Landl, N.V., Geyman, V.G. et al. Role of Prebreakdown Currents in a Static Breakdown of a Two-Sectioned Cold-Cathode Thyratron. Russ Phys J 62, 1269–1278 (2019). https://doi.org/10.1007/s11182-019-01844-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01844-3

Keywords

Navigation