Skip to main content
Log in

Monte Carlo Simulation of Diffusion Processes in Three-Component Alloys

  • Published:
Russian Physics Journal Aims and scope

The methods of molecular dynamics applied to a representative volume of a substance make it possible to calculate atomic trajectories within the time intervals on the order of 1 ns, which ensures an investigation of such slow processes as diffusion. This problem can be solved using the Monte Carlo method successfully applied to investigation of such diffusion-controlled processes as order – disorder transitions in the alloys or diffusion welding of heterogeneous metals through a backing plate. The majority of studies have been made for binary alloys, while the alloys in practical use contain a larger number of components. A theoretical model is presented, which allows investigating diffusion processes in three-component alloys via the vacancy mechanism in a solid-sphere approximation. A relation is derived for calculating the potential energy of an alloy, which is specified for the case of a completely disordered alloy. The difference between these energies is expressed via the ordering energies and order parameter. The proposed model is applicable to crystal lattices of any dimensionality. An example of its use for a three-component alloy of the A2BC stoichiometry is given, whose atoms occupy the sites of a two-dimensional square lattice is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Potekaev, V. V. Kulagina, А. A. Chaplygina, et al., Russ. Phys. J., 56, No. 6, 620–629 (2013).

    Article  Google Scholar 

  2. E. V. Galieva, R. Y. Lutfullin, A. K. Akhunova, et al., Sci. Technol. Weld. Joi., 23, No. 7, 612–618 (2018).

    Article  Google Scholar 

  3. O. V. Andrukhova, E. V. Kozlov, S. V. Dmitriev, and M. D. Starostenkov, Phys. Solid State, 39, No. 8, 1292–1296 (1997).

    Article  ADS  Google Scholar 

  4. S. V. Dmitriev, E. V. Kozlov, N. V. Lomskikh, and M. D. Starostenkov, Russ. Phys. J., 40, No. 3, 285–291 (1997).

    Article  Google Scholar 

  5. O. V. Andrukhova, S. V. Dmitriev, E. V. Kozlov, and M. D. Starostenkov, Russian Metallurgy (Metally), No. 6, 98–106 (1997).

  6. A. M. Iskandarov and S. V. Dmitriev, Crystallogr. Rep., 57, No. 5, 746–750 (2012).

    Article  ADS  Google Scholar 

  7. A. A. Kistanov, A. M. Iskandarov, and S. V. Dmitriev, Russ. Phys. J., 54, No. 10, 1128–1136 (2012).

    Article  Google Scholar 

  8. A. R. Khalikov, Fund. Probl. Sovrem. Materialoved., 8, No. 4, 109–116 (2011).

    Google Scholar 

  9. M. D. Starostenkov, A. A. Chaplygina, and P. A. Chaplygin, Inorg. Mater.: Appl. Res., 9, No. 4, 566–569 (2018).

    Article  Google Scholar 

  10. A. I. Potekaev, А. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 61, No. 3, 412–427 (2018).

    Article  Google Scholar 

  11. A. I. Potekaev, А. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 10, 1775–1785 (2017).

    Google Scholar 

  12. A. I. Potekaev, А. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 9, 1590–1600 (2017).

    Article  Google Scholar 

  13. A. I. Potekaev, А. A. Chaplygina, V. V. Kulagina, et al., Russ. Phys. J., 60, No. 2, 215–227 (2017).

    Article  Google Scholar 

  14. A. I. Potekaev, А. A. Chaplygina, V. V. Kulagina, et al., Russ. Phys. J., 59, No. 10, 1532–1542 (2017).

    Article  Google Scholar 

  15. M. Starostenkov, P. Chaplygin, A. Chaplygina, and A. Potekaev, Procedia IUTAM, 23, 78–83 (2017).

    Article  Google Scholar 

  16. А. A. Chaplygina,A. I. Potekaev,P. A. Chaplygin, et al., Russ. Phys. J., 59, No. 5, 605–611 (2016).

    Article  Google Scholar 

  17. P. A. Chaplygin, M. D. Starostenkov, A. I. Potekaev, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).

    Article  Google Scholar 

  18. M. Starostenkov, A. Chaplygina, and V. Romanenko, Key Eng. Mater., 592593, 321–324 (2014).

  19. B. Sadigh, P. Erhart, A. Stukowski, et al., Phys. Rev. B, 85, 184203 (2012).

  20. J. Luyten and C. Creemers, Surf. Sci., 602, 2491–2495 (2008).

    Article  ADS  Google Scholar 

  21. Y. Hu and T. J. Rupert, J. Mater. Sci., 54, 3975–3993 (2019).

    Article  ADS  Google Scholar 

  22. W. Xing, A. R .Kalidindi, D. Amram, and C. A. Schuh, Acta Mater., 161, 285–2 (2018).

  23. J. Cwik, T. Palewski, K. Nenkov, and G. S. Burkhanov, J. Alloys Compounds, 399, 7–13 (2015).

  24. J. Cwik, Y. Koshkid'ko, I. Tereshina, et al., J. Alloys Compounds, 649, 417–425 (2015).

    Article  Google Scholar 

  25. R. Masrour, A. Jabar, E. K. Hlil, et al., JMMM, 428, 12–16 (2017).

    Article  ADS  Google Scholar 

  26. R. Masrour, A. Jabar, and E. K. Hlil, Intermetallics, 91, 120–123 (2017).

    Article  Google Scholar 

  27. V. V. Sokolovskiy, Y. A. Sokolovskaya, M. A. Zagrebin, et al., JMMM, 470, 64–68 (2019).

    Article  ADS  Google Scholar 

  28. X.-P. Wei, P. Gao, Y.-L. Zhang, and H. Zhang, JMMM, 477, 190–197 (2019).

    Article  ADS  Google Scholar 

  29. A. R. Khalikov, E. A. Sharapov, E. A. Korznikova, et al., Fund. Probl. Sovrem. Materialoved., 15, 482–488 (2018).

    Google Scholar 

  30. A. Jamroz and J. A .Majewski, Comp. Mater. Sci., 147, 115–123 (2018).

  31. J. M. Cowley, Phys. Rev., 77, 669–675 (1950).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Khalikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 119–124, April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalikov, A.R., Sharapov, E.A., Korznikova, E.A. et al. Monte Carlo Simulation of Diffusion Processes in Three-Component Alloys. Russ Phys J 62, 691–697 (2019). https://doi.org/10.1007/s11182-019-01765-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01765-1

Keywords

Navigation