Skip to main content
Log in

The Influence of Vacancy Concentration of Low-Stability Pre-Transitional Structural-Phase States and Energy Characteristics of NiAl Intermetallide

  • CONDENSED-STATE PHYSICS
  • Published:
Russian Physics Journal Aims and scope

Using the Monte Carlo method, the influence of vacancy concentration on the structural-phase states and energy characteristics is investigated by the example of an intermetallic compound NiAl in the course of its heating and cooling. According to the analysis, the availability and concentration of vacancies are important factors in the pre-transitional low-stability structural-phase states prior to transformation. On the one hand, neither the vacancies nor their concentration affect the temperature ranges of structural-phase transformations, on the other hand, they essentially influence both the pre-transitional low-stability structural-phase states and the rate of diffusion processes. The temperature behavior of the short-range order parameter suggests that the higher the vacancy concentration (i.e., system’s defectiveness), the higher the temperatures at which the tendencies for increasing atomic ordering would be manifested due to intensified diffusion. This, in turn, evidences of a higher starting structural transformation temperature with an increase in the number of defects in the alloy during cooling. An analysis of the temperature curves of the long-range order parameter of the NiAl intermetallide allows making a conclusion that an increased vacancy concentration (i.e., the alloy’s defectiveness) gives rise to a logical result – decreased long-range ordering in the system in the region of low-stability pre-transitional states and increased starting transformation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Kositsyn and I. I. Kositsyn, Usp. Fiz. Met., 9, 195–258 (2008).

    Article  Google Scholar 

  2. A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Influence of Point and Planar Defects on the Structural-Phase Transformations in the Pre-Transitional Low-Stability Region of Metallic Systems (Ed. A. I. Potekaev) [in Russian], NTL Publ., Tomsk (2014).

  3. N. A. Koneva, L. I. Trishkina, A. I. Potekaev, and E. V. Kozlov, Structural-Phase Transformations in Low-Stability States of Metallic Systems under the Thermal-Force Action (Ed. A. I. Potekaev) [in Russian], NTL Publ., Tomsk (2015).

  4. P. A. Chaplygin, A. I. Potekaev, A. A. Chaplygina, et al., Russ. Phys. J., 58, No. 4, 485–491 (2015).

    Article  Google Scholar 

  5. A. A. Chaplygina, P. A. Chaplygin, M. D. Starostenkov, et al., Fund. Probl. Sovr. Materialoved., 13, No. 3, 403–407 (2016).

    Google Scholar 

  6. A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 59, No. 5, 605–611 (2016).

    Article  Google Scholar 

  7. A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Russ. Phys. J., 55, No. 7, 814–824 (2012).

    Article  Google Scholar 

  8. A. I. Potekaev, A. A. Klopotov, and E. V. Kozlov, Russ. Phys. J., 54, No. 9, 1012–1023 (2012).

    Article  Google Scholar 

  9. A. I. Potekaev, A. A. Chaplygina, V. V. Kulagina, et al., Russ. Phys. J., 60, No. 2, 215–226 (2017).

    Article  Google Scholar 

  10. A. I. Potekaev, A. A. Klopotov, L. I. Trishkina, et al., Bull. RAS. Physics, 80, No. 11, 1576–1578 (2016).

    Google Scholar 

  11. A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, et al., Fund. Probl. Sovr. Materialoved., 13, No. 2, 155–161 (2016).

    Google Scholar 

  12. A. A. Chaplygina, A. I. Potekaev, P. A. Chaplygin, et al., Russ. Phys. J., 59, No. 10, 1532–1542 (2016).

    Google Scholar 

  13. G. P. Poletaev, A. I. Potekaev, M. D. Starostenkov, et al., Russ. Phys. J., 58, No. 1, 42–47 (2015).

    Article  Google Scholar 

  14. A. I. Potekaev, M. M. Morozov, A. A. Klopotov, et al., Izv. VUZov, Chern Metallurg., 58, No. 8, 589–596 (2015).

  15. A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 9, 1590–1599 (2018).

    Article  Google Scholar 

  16. A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 60, No. 10, 1775–1785 (2018).

    Article  Google Scholar 

  17. A. I. Potekaev, A. A. Chaplygina, P. A. Chaplygin, et al., Russ. Phys. J., 61, No. 3, 412–427 (2018).

    Article  Google Scholar 

  18. V. I. Iveronova and A. A. Kantzelson, Short-Range Order in Solid Solutions [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  19. M. A. Krivoglaz and A. A. Smirnova, The Theory of Ordering Alloys [in Russian], Fizmatgiz, Moscow (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Potekaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 104–111, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potekaev, A.I., Chaplygina, A.A., Chaplygin, P.A. et al. The Influence of Vacancy Concentration of Low-Stability Pre-Transitional Structural-Phase States and Energy Characteristics of NiAl Intermetallide. Russ Phys J 62, 119–126 (2019). https://doi.org/10.1007/s11182-019-01691-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-019-01691-2

Keywords

Navigation