Skip to main content
Log in

Violation of the Equivalence Principle in Non-Hermitian Fermion Theory

  • ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY
  • Published:
Russian Physics Journal Aims and scope

Consequences of the non-Hermitian expansion of the Dirac equation in which the mass term is written in the form m → m1 + γ5m2 are considered. It is shown that such procedure inevitably leads to violation of the weak equivalence principle, i.e., causes an inequality of gravitational and inert fermion masses. However, if to relate the Hermitian, m1, and non-Hermitian, m2, masses by the additional condition m2/m1 = m1/2M ≤ 1, the possibility arises to preserve the equivalence principle for fermions of the standard model with high accuracy. In this case, the parameter M = const is the universal constant with dimensionality of mass that can be related to a maximum possible allowed fermion mass in this model. As a consequence of the same condition, a new class of solutions of the modified Dirac equation arises that describes particles whose properties make them obvious candidates for dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Kadyshevsky, Nucl. Phys. B, 141, 477 (1978); Fermilab-Pub. 78/22-THY (1978); Fermilab-Pub. 78/70-THY (1978).

  2. C. M. Bender and S. Boettcher, Phys. Rev. Lett., 80, 5243 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  3. Non-Hermitian Hamiltonians in Quantum Physics: Selected Contributions from the 15th Int. Conf. on Non-Hermitian Hamiltonians in Quantum Physics, Palermo, Italy, Springer Proceedings in Physics, Vol. 184 (2015).

  4. V. N. Rodionov and G. A. Kravtsov, Vestn. Mosk. Univ., Ser. 3. Fiz. Astron. No. 3, 20 (2014).

  5. V. G. Krechet, Sov. Phys. J., 29, No. 10, 790 (1986).

    Article  Google Scholar 

  6. C. M. Bender, H. F. Jones, and R. J. Rivers, Phys. Lett. B, 625, 333 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  7. Particle Data Group, The universality of the coupling between matter and gravity (Equivalence Principle) has been verified around the level 10–13 (2017).

  8. V. B. Berestetskii, E. M. Lifshits, and A. P. Pitaevskii, Theoretical Physics. Vol. 4. Quantum Electrodynamics [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  9. J. Alexandre, C. M. Bender, and P. Millington, arXiv:1703.05251v1 (2017).

  10. V. N. Rodionov and A. M. Mandel, arXiv:1708.08394v1 (2017).

  11. A. I. Ansel’m, Introduction to the Theory of Semiconductors [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  12. V. N. Rodionov and G. A. Kravtsova, Phys. Part. Nucl., 47, 252 (2016).

    Article  Google Scholar 

  13. Ya. B. Zeldovich and I. D. Novikov, Structure and Evolution of the Universe [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  14. M. G. Makris and P. Lambropoulos, Phys. Rev. A, 70, 044101 (2004).

    Article  ADS  Google Scholar 

  15. S. Esterhazy et al., Phys. Rev. A, 90, 023816 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Rodionov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 11–16, August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionov, V.N., Mandel, A.M. Violation of the Equivalence Principle in Non-Hermitian Fermion Theory. Russ Phys J 61, 1376–1382 (2018). https://doi.org/10.1007/s11182-018-1545-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1545-9

Keywords

Navigation