Skip to main content
Log in

Influence of the Solvent on the Structure and Morphology of Nanoparticles Fabricated by Laser Ablation of Bulk Magnesium Targets

  • Published:
Russian Physics Journal Aims and scope

A Correction to this article was published on 08 November 2018

This article has been updated

Ultrafine powders and colloid solutions of nanoparticles are fabricated by nanosecond pulsed laser ablation (a Nd:YAG laser, 1064 nm, 7 ns, 150 mJ, and 20 Hz) of metallic magnesium targets in water and organic solvents of different polarities (ethyl alcohol, ethyl acetate, and n-hexane). The morphology, dimensional characteristics, composition, and structure of the particles are studied by the methods of transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy depending on the solvent used. For the first time it has been demonstrated that nanostructures of magnesium oxyhydroxide Mg5O(OH)8 are formed during the ablation in water. It is established that in organic solvents, formation of hexagonal and cubic magnesium oxides is possible. Nanoparticles fabricated by the ablation in less thermostable solvents – ethyl acetate and hexane – contain carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 08 November 2018

    There was a misprint in the second author’s name. It should read D. A. Goncharova instead of D. A. Goncharov.

References

  1. M. Sain, S. H. Park, F. Suhara, and S. Law, Polym. Degrad. Stab., 83, 363–367 (2004).

    Article  Google Scholar 

  2. J. L. Booster, A. V. Sandwijk, and M. A. Reuter, Miner. Eng., 16, 273–281 (2003).

    Article  Google Scholar 

  3. J. Kang and P. Schwendeman, Biomaterials, 23, 239–245 (2002).

    Article  Google Scholar 

  4. C. Henrist, J. P. Mathieu, C. Vogels, et al., J. Cryst. Growth, 249, 321–330 (2003).

    Article  ADS  Google Scholar 

  5. Y. D. Li, M. Sui, Y. Ding, et al., Adv. Mater., 12, 818–821 (2000).

    Article  Google Scholar 

  6. H. Chen, C. Xu, Y. Liu, and G. Zhao, Electron. Mater. Lett., 8, 529–533 (2012).

    Article  ADS  Google Scholar 

  7. W. L. Fan, S. X. Sun, L. P. You, et al., J. Mater. Chem., 13, 3062–3065 (2003).

    Article  Google Scholar 

  8. B. Li, H. Cao, and G. Yin, J. Mater. Chem., 21, 13765–13768 (2011).

    Article  Google Scholar 

  9. J. P. Lv, L. Z. Qiu, and B. J. Qu, J. Cryst. Growth, 267, 676–684 (2004).

    Article  ADS  Google Scholar 

  10. C. Liang, T. Sasaki, Y. Shimizu, and N. Koshizaki, Chem. Phys. Lett., 389, 58–63 (2004).

    Article  ADS  Google Scholar 

  11. T. X. Phuoc, B. H. Howard, D. V. Martello, et al., Opt. Laser. Eng., 46, 829–834 (2008).

    Article  Google Scholar 

  12. F. Abrinaei, J. Opt. Soc. Am. B, 33, No. 5, 864–869 (2016).

    Article  ADS  Google Scholar 

  13. K. J. Klabunde, J. V. Stark, O. Koper, et al., J. Phys. Chem., 100, No. 30, 12142–12153 (1996).

    Article  Google Scholar 

  14. R. Richards, W. F. Li, S. Decker, et al., J. Am. Chem. Soc., 122, No. 20, 4921–4925 (2000).

    Article  Google Scholar 

  15. K. Y. Niu, J. Yang, S. A. Kulinich, et al., J. Am. Chem. Soc., 132, No. 28, 9814–9819 (2010).

    Article  Google Scholar 

  16. Z. Yan, R. Bao, C. M. Busta, and D. B. Chrisey, Nanotechnology, 22, Art. No. 265610, 1–8 (2011).

  17. F. Abrinaei, M. J. Torkamany, M. R. Hantezadeh, and J. Sabbaghzadeh, Sci. Adv. Mater., 4, No. 3/4, 501–506 (2012).

    Article  Google Scholar 

  18. A. Schwenke, P. Wagener, S. Nolte, and S. Barcikowski, Appl. Phys. A, 104, 77–82 (2011).

    Article  ADS  Google Scholar 

  19. K. S. Khashan and F. Mahdi, Surf. Rev. Lett., 24, No. 7, Art. No. 1750101, 1–7 (2017).

    Article  ADS  Google Scholar 

  20. F. Abrinaei, J. Eur. Opt. Soc.-Rapid Publ., 13, No. 15, 1–10 (2017).

    Google Scholar 

  21. V. A. Svetlichnyi and I. N. Lapin, Russ. Phys. J., 56, No. 5, 581–587 (2013).

    Article  Google Scholar 

  22. V. A. Svetlichnyi and I. N. Lapin, Russ. Phys. J., 57, No. 12, 1789–1792 (2014).

    Article  Google Scholar 

  23. M. J. McKelvy, R. Sharma, A. V. G. Chizgridya, and R. W. Carpenter, Chem. Mater., 13, No. 3, 921–926 (2001).

    Article  Google Scholar 

  24. L.-X. Li, D. Xu, X.-Q. Li, et al., New J. Chem., 38, 5445–5452 (2014).

    Article  Google Scholar 

  25. S. Xie, X. Han, Q. Kuang, et al., J. Mater. Chem., 21, 7263–7268 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Svetlichnyi.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 42–48, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svetlichnyi, V.A., Goncharov, D.A., Lapin, I.N. et al. Influence of the Solvent on the Structure and Morphology of Nanoparticles Fabricated by Laser Ablation of Bulk Magnesium Targets. Russ Phys J 61, 1047–1053 (2018). https://doi.org/10.1007/s11182-018-1495-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1495-2

Keywords

Navigation