Skip to main content
Log in

Ion Implantation in Narrow-Gap CdxHg1–xTe Solid Solutions

  • ANNIVERSARY JOURNAL
  • Published:
Russian Physics Journal Aims and scope

The results of experimental studies of processes of the radiation defect formation under ion implantation of narrow-gap CdxHg1-xTe solid solutions (MCT) are presented. The processes of formation of structural damages of the crystal and their effect on the electrophysical properties of ion-implanted bulk crystals and ptype heteroepitaxial structures grown by liquid-phase and molecular-beam epitaxy are considered. The results on the spatial distribution of implanted boron atoms and radiation donor centers in these materials are presented as a function of the mass, dose, and energy of ions being implanted and the implantation temperature. The processes and models of the formation of n+–n-–p-structures during boron ion implantation in p-type MCT and their experimental proof are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Lawson, S. Nielsen, E. H. Putley, and A. S. Young, J. Phys. Chem. Solids, 9, 325–329 (1959).

    Article  ADS  Google Scholar 

  2. A. Rogalski, Rep. Prog. Phys., 68, No. 10, 2267–2336 (2005).

    Article  ADS  Google Scholar 

  3. A. Rogalski, Infrared Detectors, second edition, CRC Press Taylor & Francis Group, New York (2011).

    Google Scholar 

  4. V. P. Ponomarenko, Usp. Fiz. Nauk, 173, Vyp. 6, 649–665 (2003).

    Article  Google Scholar 

  5. O. Gravrand, J. Rothman, C. Cervera, et al., J. Electron. Mater., 45, 4532–4541 (2016).

    Article  ADS  Google Scholar 

  6. L. A. Bovina and V. I. Stafeev, Physics of A II B Vl Compounds, ed. by A. N. Georgobiani and M. K. Sheinkman [in Russian], Nauka, Moscow (1986).

  7. N. S. Baryshev, Properties and Applications of Narrow-Gap Semiconductors [in Russian], UNIPRESS, Kazan (2000).

    Google Scholar 

  8. M. A. Kinch Fundamentals of Infrared Detector Materials, SPIE Press, Washington, USA (2007).

    Book  Google Scholar 

  9. J. Chu and A. Sher, Physics and Properties of Narrow Gap Semiconductors, Springer Science, N. Y. (2008).

    Google Scholar 

  10. P. Capper and J. Garland, Mercury Cadmium Telluride: Growth, Properties and Applications, John Wiley & Sons Ltd, Chichester, UK (2011).

    Google Scholar 

  11. F. A. Zaitov, F. K. Isaev, and A. V. Gorshkov, Defect Formation and Diffusion Processes in Some Semiconductor Solid Solutions [in Russian], Azerneshr, Baku (1984).

    Google Scholar 

  12. I. A. Denisov, Development of Technology for Growing Epitaxial Layers of Cadmium-Mercury-Tellurium by Liquid-Phase Epitaxy for Infrared Photodetectors [in Russian], Ph.D. Thesis, Moscow (2007).

  13. Yu. G. Sidorov, S. A. Dvoretskii, V. S. Varavin, and N. N. Mikhailov, Matrix Photodetector Devices of Infrared Range, ed. by S. P. Sinitsa, Ch. 2, [in Russian], Nauka, Novosibirsk (2001).

    Google Scholar 

  14. Photodetectors Based on Cadmium-Mercury-Tellurium Epitaxial System, ed. by A. L. Aseev [in Russian], Izd. SO RAN, Novosibirsk (2012).

  15. M. V. Yakushev, Heteroepitaxy of ZnTe, CdTe, and CdHgTe solid solutions on GaAs and Si substrates [in Russian], Doctoral Thesis, Novosibirsk (2011).

  16. A. V. Voitsekhovskii, Yu. A. Denisov, A. P. Kokhanenko, et al., Avtometr., No. 4, 47–58 (1998).

  17. V. V. Vasiliev, D. G. Esaev, A. F. Kravchenko, et al., Fiz. Tekh. Poluprovodn., 34, Vyp. 7, 877–880 (2000).

  18. P. Capper, J. Cryst. Growth, 57, 280-299 (1982).

    Article  ADS  Google Scholar 

  19. M. Brown and W. Willoughby, J. Cryst. Growth, 59, 27–39 (1982).

    Article  ADS  Google Scholar 

  20. D. Maier, L. Ericson, and D. Davis, Ion Doping of Semiconductors [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  21. Kh. Rissel and I. Ruge, Ion Implantation, ed. by M. I. Gusev [Russian translation], Nauka, Moscow (1983).

  22. I. A. Abroyan, A. N. Andronov, and A. I. Titov, Physical Basis of Electron and Ion Technology [in Russian], Vyssh. Shkola, Moscow (1984).

    Google Scholar 

  23. Physical Processes in Irradiated Semiconductors, ed. by L. S. Smirnov [in Russian], Nauka, Novosibirsk (1977).

  24. Problems of Radiation Technology of Semiconductors, ed. by L. S. Smirnov [in Russian], Nauka, Novosibirsk (1980).

  25. L. S. Smirnov, Fiz. Tekh. Poluprovodn., 35, Vyp. 9, 1029–1031 (2001).

  26. A. V. Vasiliev and A. I. Baranov, Defect-Impurity Reactions in Semiconductors [in Russian], Izd. SO RAN, Novosibirsk (2001).

    Google Scholar 

  27. L. Mollard, G. Destefanis, G. Bourgeois, et al., J. Electr. Mater., 40, 1830–1839 (2011).

    Article  ADS  Google Scholar 

  28. С. Е. Mallon, В. А. Green, R. E. Leadon, and J. А. Naber, IEEE Transact. Nucl. Sci., NS-22, No. 6, 228–2288 (1975).

    Google Scholar 

  29. A. C. Foyt, T. C. Harman, and J. P. Donnelly, Appl. Phys. Lett., 18, No. 8, 321–323 (1971).

    Article  ADS  Google Scholar 

  30. A. V. Voitsekhovskii, V. O. Voloshin, M. B. Gol’man, and A. P. Kokhanenko, Radiation Physics of Narrow-Gap Semiconductors [in Russian], Gylym, Almaty (1998).

    Google Scholar 

  31. J. Marine and С. Motte, Appl. Phys. Lett., 23, No. 8, 450–452 (1973).

    Article  ADS  Google Scholar 

  32. G. Fiorito, G. Gasparrini, and F. Svelto, Infrared Phys., 15, 287-293 (1975).

    Article  ADS  Google Scholar 

  33. E. Igras, J. Piotrowski, and I. Zimnoch-Higersberger, Electron Techn., 10, No. 4, 63–70 (1977).

    Google Scholar 

  34. М. Lanir, C. C. Wang, and A. H. B. Vanderwyck, Appl. Phys. Lett., 34, No. 1, 50–52 (1979).

    Article  ADS  Google Scholar 

  35. М. Chu, A. H. B. Vanderwyck, and D. T. Cheung, Appl. Phys. Lett., 37, No. 5, 486-488 (1980).

    Article  ADS  Google Scholar 

  36. P. G. Pitcher, P. L. F. Hemment, and Q. V. Davis, Electron. Lett., 18, No. 25, 1090-1092 (1982).

    Article  Google Scholar 

  37. R. E. DeWames, G. M. Williams, J. G. Pasko, and A. H. B. Vanderwyck, J. Cryst. Growth, 86, No. 1–4, 849–858 (1988).

    Article  ADS  Google Scholar 

  38. J. H. Centeno, C. Gonzalez, J. Sangrador, and I. Rodriguez, J. Appl. Phys., 68, No. 12, 6149–6152 (1990).

    Article  ADS  Google Scholar 

  39. G. L. Destefanis, R. Boch, and R. Roussille, J. Cryst. Growth, 59, 270–275 (1982).

    Article  ADS  Google Scholar 

  40. G. Bahir, T. Bernstein, and R. Kalish, Radiation Effects, 48, 247–252 (1900).

    Article  Google Scholar 

  41. G. Bahir and R. Kalish, J. Appl. Phys., 54, No. 6, 3129–3140 (1983).

    Article  ADS  Google Scholar 

  42. S. Y. Wu, W. J. Choyke, W. J. Takei, et al., J. Vac. Sci. Technol., 21, No. 1, 255–258 (1982).

    Article  ADS  Google Scholar 

  43. G. L. Destefanis, Nucl. Instrum Methods, 209/210, 567–580 (1983).

    Article  Google Scholar 

  44. Yu. V. Lilenko, V. S. Kulikauskas, K. V. Shastov, and E. M. Kiryushkin, Poverkhn. Fiz., Khim., Mekh., No. 7, 142–144 (1988).

  45. Yu. V. Lilenko, K. V. Shastov, A. S. Petrov, A. V. Voitsekhovskii, et al., Phys. Stat. Sol. (a), 113, No. 2, 285–294 (1989).

    Article  ADS  Google Scholar 

  46. A. V. Voitsekhovskii and A. P. Kokhanenko, Russ. Phys. J., 41, No. 1, 101–116 (1998).

    Article  Google Scholar 

  47. A. V. Voitsekhovskii and A. P. Kokhanenko, Prikl. Fiz., No. 4, 38–44 (2000).

  48. A. V. Voitsekhovskii, A. P. Kokhanenko, S. A. Shulga, and Roger Smith, Nucl. Instrum Methods Phys. Res. B, 215, Iss. 1–2, 109–121 (2004).

  49. N. Kh. Talipov, Formation of n-Type Conductivity Layers under Radiation-Thermal Treatments of p-CdxHg1-xTe crystals [in Russian], Ph.D. Thesis, Novosibirsk (1994).

  50. M. H. Aguirre and H. R. Canepa, Nucl. Instrum. Methods Phys. Res. B, 175–177, 274–279 (2001).

    Article  ADS  Google Scholar 

  51. M. H. Aguirre, H. R. Canepa, and N. E. Walsoe de Reca, J. Appl. Phys., 92, No. 10, 5745–5748 (2002).

    Article  ADS  Google Scholar 

  52. A. S. Petrov, V. S. Kulikauskas, Yu. V. Lilenko, et al., Sov. Phys. J., 31, No. 12, 1027–1032 (1988).

  53. L. K. Magel and T. W. Sigmon J. Cryst. Growth, 86, 756–761 (1988).

    Article  ADS  Google Scholar 

  54. L. O. Bubulac, W. E. Tennant, R. A. Riedel, and T. J. Magee, J. Vac. Sci. Technol., 21, Nо. 1, 251–254 (1982).

  55. H. F. Schaake, J. Vac. Sci. Technol., A4, No. 4, 2174–2176 (1986).

    Article  ADS  Google Scholar 

  56. G. L. Destefanis, J. Cryst. Growth, 89, 700–722 (1988).

    Article  ADS  Google Scholar 

  57. V. Richter and R. Kalish, J. Appl. Phys., 67, No. 10, 6578–6580 (1900).

    Article  ADS  Google Scholar 

  58. B. L. Williams, H. G. Robinson, and C. R. Helms, J. Electr. Mater., 26, No. 6, 600–605 (1997).

    Article  ADS  Google Scholar 

  59. A. B. Smirnov, R. K. Savkina, R. S. Udovytska, et al., Nanoscale Res. Lett., 12, No. 320, 1–9 (2017).

    Google Scholar 

  60. N. Mainzer and E. Zolotoyabko, J. Electr. Mater., 29, No. 6, 792–797 (2000).

    Article  ADS  Google Scholar 

  61. Anand Singh, A. K. Shukla, and R. Pal, Opt. Mater., 57, 34–38 (2016).

    Article  ADS  Google Scholar 

  62. S. A. Dvoretskii, N. N. Mikhailov, V. G. Remesnik, and N. Kh. Talipov, Avtometr., No. 5, 73–77 (1998).

  63. A. V. Voitsekhovskii, A. P. Kokhanenko, Yu. V. Lilenko, et al., Cryst. Res. Technol., 23, No. 2, 237–241 (1988).

    Article  Google Scholar 

  64. C. D. Smith, P. Rice-Evans, and N. Shaw, Phys. Rev. Lett., 72, No. 7, 1108–1111(1994).

    Article  ADS  Google Scholar 

  65. A. V. Voitsekhovskii, A. G. Korotaev, and A. P. Kokhanenko, Russ. Phys. J., 38, No. 10, 1007–1022 (1995).

    Article  Google Scholar 

  66. A. Uedono, H. Ebe, M. Tanaka, et al., Jpn. J. Appl. Phys., 37, Part 1, No. 3A, 786–791 (1998).

    Article  ADS  Google Scholar 

  67. A. Uedono, H. Ebe, M. Tanaka, et al., Jpn. J. Appl. Phys., 37, Part 1, No. 7, 3910–3914 (1998).

    Article  ADS  Google Scholar 

  68. N. Kh. Talipov, Matrix Photodetector Devices of Infrared Range, ed. by S. P. Sinitsa [in Russian], Nauka, Novosibirsk (2001).

  69. N. Kh. Talipov, Physico-Technological Bases of Doping of Narrow-Gap Semiconductor Compounds CdxHg1–xТе by Radiation-Thermal Effects [in Russian], Doctoral Thesis, Tomsk (2015).

  70. N. Kh. Talipov, V. N. Ovsyuk, V. G. Remesnik, and V. V. Vasiliev, Mater. Sci. Eng. B, 44, 266–269 (1997).

    Article  Google Scholar 

  71. H. Ryssel, K. Muller, J. Biersack, et al., Phys. Stat. Sol. (a), 57, 619–624 (1980).

    Article  ADS  Google Scholar 

  72. S. Margalit, Y. Nemirovsky, and I. Rotstein, J. Appl. Phys., 50, No. 10, 6386–6389 (1979).

    Article  ADS  Google Scholar 

  73. L. O. Bubulac, W. E. Tennant, S. H. Shin, et al., Jpn. J. Appl. Phys., 19, 495–500 (1980).

    Article  Google Scholar 

  74. L. K. Vodopyanov, S. P. Kozyrev, and A. V. Spitsyn, Fiz. Tekh. Poluprovodn., 16, Vyp. 5, 782–788 (1982).

  75. L. K. Vodopyanov, S. P. Kozyrev, and A. V. Spitsyn, Fiz. Tekh. Poluprovodn., 16, Vyp. 6, 972–977 (1982).

  76. S. P. Kozyrev and L. K. Vodopyanov, Fiz. Tekh. Poluprovodn., 17, Vyp. 5, 893–899 (1983).

  77. S. P. Kozyrev and L. K. Vodopyanov, Fiz. Tekh. Poluprovodn., 17, Vyp. 5, 900–903 (1983).

  78. V. N. Brudnyi, S. N. Grinyaev, and V. E. Stepanov, Physica B, 212, 429–435 (1995).

    Article  ADS  Google Scholar 

  79. Yu. V. Lilenko, K. V. Shastov, N. V. Kuznetsov, Fiz. Tekh. Poluprovodn., 20, Vyp. 10, 1907–1910 (1986).

  80. G. L. Destefanis, R. Boch, and R. Roussille, J. Cryst. Growth, 59, 270–275 (1982).

    Article  ADS  Google Scholar 

  81. R. Kumar, M. В. Dutt, R. Nath, et al., J. Appl. Phys., 68, No. 11, 5564–5566 (1990).

    Article  ADS  Google Scholar 

  82. A. V. Voitsekhovskii and N. Kh. Talipov, Izv. Vyssh. Uchebn. Zaved. Mater. Elektron. Tekh., No. 4, 32–41 (2011).

  83. A. V. Voitsekhovskii, D. V. Grigorèv, A. G. Korotaev, et al., Prikl. Fiz., No. 5, 93–95 (2003).

  84. A. V. Voitsekhovskii, D. V. Grigorèv, A. G. Korotaev, et al., Izv. Vyssh. Uchebn. Zaved. Mater. Elektron. Tekh., No. 2, 60–65 (2004).

  85. A. V. Voitsekhovskii, D. V. Grigorèv, A. G. Korotaev, et al., Prikl. Fiz., No. 3, 83–88 (2005).

  86. A. V. Voitsekhovskii, D. V. Grigorèv, A. G. Korotaev, et al., Proceed. Intern. Sci.-Tech. Conf. "High Technologies in the Industry of Russia (Materials and Devices of Functional Electronics and Photonics) [in Russian], JSC TsNITI "Tekhnomash", Moscow (2005).

  87. D. V. Grigorèv, Radiation Defect Formation during Ion Implantation in the CdxHg1–xTe Graded-Gap Semiconductor Structures Grown by Molecular-Beam Epitaxy [in Russian], Ph.D. Thesis, Tomsk (2005).

  88. A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Russ. Phys. J., 49, No. 9, 929–933 (2006).

    Article  Google Scholar 

  89. A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 49, No. 9, Appendix, 142–145 (2006).

  90. A. V. Voitsekhovskii, D. V. Grigorèv, A. P. Kokhanenko, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 49, No. 10/2, 389–391 (2006).

    Google Scholar 

  91. A. V. Voitsekhovskii, D. V. Grigorèv, A. P. Kokhanenko, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 49, No. 10/2, 392–394 (2006).

    Google Scholar 

  92. A. V. Voitsekhovskii, D. V. Grigorèv, A. G. Korotaev, et al., Izv. Vyssh. Uchebn. Zaved. Mater. Elektron. Tekh., No. 2, 35–40 (2007).

  93. A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Prikl. Fiz., No. 6, 119–123 (2007).

  94. A. V. Voitsekhovskii, D. V. Grigorèv, and N. Kh. Talipov, Russ. Phys. J., 51, No. 10, 1001–1015 (2008).

    Article  Google Scholar 

  95. N. Kh. Talipov, A. V. Voitsekhovskii, and D. V. Grigorèv, Russ. Phys. J., 57, No. 3, 345–358 (2014).

    Article  Google Scholar 

  96. L. O. Bubulac, W. E. Tennant, D. S. Lo, et al., J. Vac. Sci. Technol., A5, No. 5, 3166–3170 (1987).

    Article  ADS  Google Scholar 

  97. G. A. Umana-Membreno, H. Kala, J. Antoszewski, et al., J. Electr. Mater., 42, 3108–3113 (2013).

    Article  ADS  Google Scholar 

  98. A. V. Dvurechenskii, V. G. Remesnik, I. A. Ryazantsev, and N. Kh. Talipov, Fiz. Tekh. Poluprovodn., 27, Vyp. 1, 168–171 (1993).

  99. L. O. Bubulac and W. E. Tennant, Appl. Phys. Lett., 51, No. 5, 355–357 (1987).

    Article  ADS  Google Scholar 

  100. L. O. Bubulac, J. Cryst. Growth, 86, 723–734 (1988).

    Article  ADS  Google Scholar 

  101. V. N. Ovsyuk and N. Kh. Talipov, Prikl. Fiz., No. 5, 87–92 (2003).

  102. A. M. Mishchenko, N. Kh. Talipov, and V. V. Shashkin, Patent of the Russian Federation No. 2023326 (1994).

  103. A. V. Voitsekhovskii and N. Kh. Talipov, Izv. Vyssh. Uchebn. Zaved. Fiz., 58, No. 8/2, 267–270 (2015).

    Google Scholar 

  104. N. Kh. Talipov, V. P. Popov, V. G. Remesnik, et al., Fiz. Tekh. Poluprovodn., 26, Vyp. 2, 310–317 (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kh. Talipov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 3–20, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talipov, N.K., Voitsekhovskii, A.V. Ion Implantation in Narrow-Gap CdxHg1–xTe Solid Solutions. Russ Phys J 61, 1005–1023 (2018). https://doi.org/10.1007/s11182-018-1490-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1490-7

Keywords

Navigation