Features of Stationary Photoconductivity of High-Ohmic Semiconductors Under Local Illumination

  • A. P. Lysenko
  • A. G. Belov
  • V. E. Kanevskii
  • E. A. Odintsova
Article

Photoconductivity has been thoroughly studied for a long time. However, most researchers have examined photoconductivity of semiconductors while illuminating the entire surface of samples. The present paper examines the effect of local exposure that ensures a high level of injection of free charge carriers upon the conductivity of high-ohmic cadmium telluride and semi-insulating gallium arsenide samples and upon the properties of ohmic contacts to samples. The authors found that regardless of the exposure area the value of transition resistance of ohmic contacts decreases and the concentration of the main charge carriers increases in the sample in proportion to radiation intensity. This research uncovered a number of previously unknown effects that are interesting from the physical point of view. This paper focuses on discussing these effects.

Keywords

high-ohmic semiconductor photoconductivity ohmic contact local illumination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Ryvkin, Photoelectric Phenomena in Semiconductors [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  2. 2.
    A. Rose, Concepts in Photoconductivity Theory, Interscience, New York (1965).Google Scholar
  3. 3.
    V. I. Gaman, Physics of Semiconductor Devices: Textbook [in Russian], NTL, Tomsk (2000).Google Scholar
  4. 4.
    V. V. Batavin, Yu. A. Kontsevoy, Yu. V. Fedorovich, Measuring Parameters of Semiconductor Materials and Structures [in Russian], Radio i Sviaz, Moscow (1985).Google Scholar
  5. 5.
    V. A. Golubyatnikov, F. I. Grigor’ev, A. P. Lysenko, et al., Industrial Laboratory. Diagnostics of Materials [in Russian], 80, Issue 1, 35–38 (2014).Google Scholar
  6. 6.
    V. A. Golubyatnikov, F. I. Grigor’ev, A. P. Lysenko, et al., Izv. Vyssh. Uchebn. Zaved., Electronics [in Russian], Issue 2(106), 174–181 (2014).Google Scholar
  7. 7.
    A. G. Belov, V. A. Golubyatnikov, F. I. Grigor’ev, et al., Instrum. Exp. Tech., 57, Issue 5, 622–626 (2014).Google Scholar
  8. 8.
    V. A. Golubyatnikov, F. I. Grigor’ev, A. P. Lysenko, et al., Instrum. Exp. Tech., 57, Issue, 3, 326–329 (2014).Google Scholar
  9. 9.
    A. P. Lysenko, A. G. Belov, V. A. Golubyatnikov, N. I. Strogankova, Izv. Vyssh. Uchebn. Zaved., Electronics [in Russian], 20, Issue 2, 174–181 (2015).Google Scholar
  10. 10.
    V. A. Golubyatnikov, F. I. Grigor’ev, A. P. Lysenko, et al., Semiconductors, 48, Issue 13, 1700–1703 (2014).Google Scholar
  11. 11.
    A. P. Lysenko, V. A. Golubyatnikov, A. G. Belov, V. E. Kanevskii, Elektronika [in Russian], 21, Issue 1, 5–12 (2016).Google Scholar
  12. 12.
    S. S. Khludkov, O. B. Koretskaya, A. V. Tyazhev, J. Semicond., 38, Issue 3, 262–265 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. P. Lysenko
    • 1
  • A. G. Belov
    • 2
  • V. E. Kanevskii
    • 2
  • E. A. Odintsova
    • 1
  1. 1.National Research University Higher School of EconomicsMoscowRussia
  2. 2.JSC Federal State Research and Design Institute of Rare Metal Industry GIREDMETMoscowRussia

Personalised recommendations