Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

Article
  • 2 Downloads

The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor–metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

Keywords

electron heat capacity pd-hybridization strongly correlated system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Tomczak, K. Haule and G. Kotliar, Proc. Natl. Acad. Sci. U. S. A., 109(9), 3243–3246 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    K. Koyama, T. Goto, T. Kanomata, and R. J. Note, Phys. Soc. Jpn., 68, 1693– 1698 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    A. E. Petrova, V. N. Krasnorussky, A. A. Shikov, et al., Phys. Rev. B, 82, 155124-1–155124-6 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    F. P. Mena, J. F. DiTusa, D. Marel van der, et al., Phys. Rev. B, 73, 085205-1–085205-7 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    O. Delaire, I. I. Al-Qasir, A. F. May, et al., Phys. Rev. B, 91, 0943071-1–0943071-12 (2015).CrossRefGoogle Scholar
  6. 6.
    V. Jaccarino, G. K. Wertheim, J. H. Warnick, et al., Phys. Rev., 160, 476–482 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    Z. Schlesinger, Z. Fisk, H. T. Zhang, et al., Phys. Rev. Lett., 71, 1748–1751 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    O. Delaire, K. Marty, M. B. Stone, et al., Proc. Natl. Acad. Sci. U. S. A., 108, 4725–4730 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    P. P. Parshin, P. A. Alekseev, K. S. Nemkovskii, et al., J. Exp. Theor. Phys., 118(2), 242–252 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    A. A. Povzner and A. N. Filanovich, Physica B, 456, 371–374 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    J. Acker, K. Bohmhammel, G. J. K. Berg van den, et al., J. Chem. Thermodynam., 31, 1523–1536 (1999).CrossRefGoogle Scholar
  12. 12.
    P. V. Gel’d, A. A. Povzner, and A. G. Volkov, Dokl. Akad. Nauk SSSR, 283, 358–360 (1985).Google Scholar
  13. 13.
    H. Ohta, S. Kimura, E. Kulatov, et al., J. Phys. Soc. Jpn., 63, 4206–4212 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    А. А. Povzner, A. G. Volkov, and T. A. Nogovitsyna, JMMM, 409, 1–5 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations