Advertisement

Russian Physics Journal

, Volume 60, Issue 12, pp 2087–2094 | Cite as

Modeling the Deflection of Polarized Electrons with Energies in the Range 3.35–14 GeV in a Bent Silicon Crystal

  • V. P. Koshcheev
  • Yu. N. Shtanov
  • D. A. Morgun
  • T. A. Panina
Article
  • 12 Downloads

The evolution of the magnetic moment of a relativistic particle is described with the help of the Bargmann–Michel–Telegdi equation in the planar channels of a bent silicon crystal with allowance for multiple scatteringboth along and transverse to the (111) atomic plane, which consists of <110> chains. Results of numerical simulations demonstrate a strong dependence of the degree of depolarization of the electron beam on the energy since at the energies 3.35 and 4.2 GeV the maximum in the distribution over rotation angles of the electron spin is absent, and at energies from 6.3 to 14 GeV the position of the maximum is in line with the theoretical estimate obtained using the formula of V. L. Lyuboshits.

Keywords

Bargmann–Michel–Telegdi equation depolarization of an electron beam channeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Baryshevsky, Nucl. Instrum. Methods B, 402, 5 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    L. Burmistrov, G. Calderini, Yu. Ivanov, et al., CERN-SPSC-2016-030 (2016).Google Scholar
  3. 3.
    G. M. Gurevich, A. A. Lukhanin, F. Maas, et al., Proceedings of the XVIth International Workshop in Polarized Sources, Targets, and Polarimetry PSTP2015, Bochum, PoS (PSTP2015)043.Google Scholar
  4. 4.
    A. Mazzolari, E. Bagli, L. Bandiera, et al., Phys. Rev. Lett., 112, 135503 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    U. Wienands, T. W. Markiewicz, J. Nelson, et al., Phys. Rev. Lett., 114, 074801 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    T. N. Wistisen, U. I. Uggerhøj, U. Wienands, et al., Phys. Rev. Accel. Beams, 19, 071001 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    K. A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014).CrossRefGoogle Scholar
  8. 8.
    V. L. Lyuboshits, Yad. Fiz., 31, 986 (1980).Google Scholar
  9. 9.
    V. P. Koshcheev, Yu. N. Shtanov, D. A. Morgun, and T. A. Panina, Тech. Phys. Lett., 41, No. 10, 946 (2015).Google Scholar
  10. 10.
    G. Marsaglia and T. A. Bray, SIAM Rev., 6, No. 3, 260 (1964).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Yu. N. Shtanov, V. P. Koshcheev, and D. A. Morgun, JINRLIB Software Library, URL: http://wwwinfo.jinr.ru/programs/jinrlib/tropics/index.html (access date: 02.17.2017).
  12. 12.
    D. S. Gemmel, Rev. Mod. Phys., 46, No. 1, 129 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    P. A. Doyle and P. S. Turner, Acta Cryst. A, 24, 390 (1968).CrossRefGoogle Scholar
  14. 14.
    Yu. N. Shtanov, D. A. Morgun, and A. S. Fokin, Certificate of State Registration of Computer Program No. 2014618657, Rospatent, Moscow (2014).Google Scholar
  15. 15.
    J. Lindhard, Usp. Fiz. Nauk, 99, No. 2, 249 (1969).CrossRefGoogle Scholar
  16. 16.
    M. Kitagawa and Y. H. Ohtsuki, Phys. Rev. В, 8, No. 7, 3117 (1973).ADSCrossRefGoogle Scholar
  17. 17.
    V. P. Koshcheev, Russ. Phys. J., 38, No. 1, 86 (1995).CrossRefGoogle Scholar
  18. 18.
    V. P. Koshcheev, Russ. Phys. J., 42, No. 10, 878 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. P. Koshcheev
    • 1
  • Yu. N. Shtanov
    • 2
  • D. A. Morgun
    • 3
    • 4
  • T. A. Panina
    • 3
  1. 1.“Strela” Branch of the Moscow Aviation Institute (National Research University)ZhukovskyRussia
  2. 2.Surgut Branch of Tyumen Industrial UniversitySurgutRussia
  3. 3.Surgut State UniversitySurgutRussia
  4. 4.Scientific-Research Institute for System Analysis of the Russian Academy of Sciences (Federal State Institution)MoscowRussia

Personalised recommendations