Skip to main content
Log in

One-Dimensional Fokker–Planck Equation with Quadratically Nonlinear Quasilocal Drift

  • Published:
Russian Physics Journal Aims and scope

The Fokker–Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian’s iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Risken, The Fokker–Planck Equation, Springer, New York (1989).

  2. T. D. Frank, Nonlinear Fokker–Planck Equations, Springer Series in Synergetics, Springer, New York (2005).

    Google Scholar 

  3. P.-H. Chavanis, Comptes Rendus Physique, 7, No. 3, 318–330 (2006).

    Article  ADS  Google Scholar 

  4. P.-H. Chavanis, Physica A, 340, 57–65 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  5. D. L. Otten and P. Vedula, J. Stat. Mech.: Theor. Exp., 2011, 09031 (2011).

  6. R. S. Wedemann, A. R. Plastino, and C. Tsallis, Phys. Rev. E, 94 (6-1), No. 062105 (2016).

  7. S. Bellucci and A. Yu. Trifonov, J. Phys. A, 38, L103–L114 (2005).

  8. A. Yu. Trifonov and A. V. Shapovalov, Russ. Phys. J., 52, No. 9, 899–911 (2009).

    Article  Google Scholar 

  9. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    MATH  Google Scholar 

  10. N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Mathematics and its Applications (Soviet Series), D. Reidel Publ., Dordrecht (1985).

    Book  Google Scholar 

  11. P. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1986).

    Book  MATH  Google Scholar 

  12. A. M. Vinogradov, I. S. Krasil’shchik, and V. V. Lychagin, Introduction to the Geometry of Nonlinear Differential Equations [in Russian], Nauka, Moscow (1986).

    MATH  Google Scholar 

  13. É. Kamke, Handbook on Ordinary Differential Equations [Russian translation], Nauka, Moscow (1976).

    Google Scholar 

  14. He Ji-Huan, Abstract Appl. Anal., 2012, Article ID 916793 (2012).

  15. G. Adomian, J. Math. Anal. Appl., 135, 501–544 (1988).

    Article  MathSciNet  Google Scholar 

  16. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Series: Fundamental Theories of Physics, Vol. 60, Kluwer Academic Publishers, Boston (1994).

    MATH  Google Scholar 

  17. G. Adomian and R. Rach, J. Math. Anal. Appl., 174, 118–137 (1993).

    Article  Google Scholar 

  18. E. A. Levchenko, A. Yu. Trifonov, and A. V. Shapovalov, Russ. Phys. J., 60, No. 2, 284–291 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shapovalov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 12–19, December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapovalov, A.V. One-Dimensional Fokker–Planck Equation with Quadratically Nonlinear Quasilocal Drift. Russ Phys J 60, 2063–2072 (2018). https://doi.org/10.1007/s11182-018-1327-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-018-1327-4

Keywords

Navigation