Russian Physics Journal

, Volume 60, Issue 11, pp 1938–1945 | Cite as

Investigation of Transport Parameters of Graphene-Based Nanostructures

  • D. M. Sergeyev
  • K. Sh. Shunkeyev

The paper presents results of computer simulation of the main transport parameters of nanostructures obtained through the row-by-row removal of carbon atoms from graphene ribbon. Research into the electrical parameters is carried out within the density functional theory using the non-equilibrium Green functions in the local-density approximation. Virtual NanoLab based on Atomistix ToolKit is used to construct structures and analyze simulation results. Current-voltage characteristics, differential conductivity and transmittance spectra of nanostructures are calculated at different values of bias voltage. It is found that there is a large region of negative differential resistance in current-voltage characteristics of nanostructures caused by resonant tunneling of quasi-particles. Differential (dI/dV) characteristic also has similar changes. The obtained results can be useful for building novel electronic devices in the field of nanoelectronics.


graphene carbon atomic chain nanoscale junction current-voltage characteristic differential conductivity transmittance spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Klavsyuk and A. M. Saletsky, Phys.-Usp., 58, No. 10, 933–951 (2015).Google Scholar
  2. 2.
    D. Sergeyev, K. Shunkeyev, N. Zhanturina, et al., IOP Conf. Series: MSE, 49, 012049 (2013).CrossRefGoogle Scholar
  3. 3.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science, 306, 666–669 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    I. V. Antonova, Phys.-Usp., 60, 204 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    Ch. Jin, H. Lan, L. Peng, et al., Phys. Rev. Lett., 102, 205501 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    D. W. Brenner, O. A. Shenderova, J. A. Harrison, et al., J. Phys.: Condens. Matter, 14, 783–802 (2002).ADSGoogle Scholar
  7. 7.
    E. P. Bellido and J. M. Seminario, J. Phys. Chem. C, 116 (6), 4044–4049 (2012).Google Scholar
  8. 8.
    K. Momma and F. J. Izumi, Appl. Crystallogr., 41, 653–658 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Brandbyge, J.-L. Mozos, P. Ordejon, et al., Phys. Rev. B, 65, 165401 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    A. Sattar, R. J. Amjad, S. Yasmeen, et al., Physica E, 79, 8–12 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    S. Datta, Nanotechnology, 15, S433–S451 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    N. V. Skorodumova, S. I. Simak, A. E. Kochetov, et al., Phys. Rev. B, 72, 193413 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    N. P. Guisinger, M. E. Greene, R. Basu, et al., Nano Lett., 4, 55–59 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    T. Rakshit, G. Ch. Liang, A. W. Ghosh, et al., Nano Lett., 4, 1803–1807 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Military Institute of Air Defence ForcesAktobeKazakhstan
  2. 2.Zhubanov Aktobe Regional State UniversityAktobeKazakhstan

Personalised recommendations