Russian Physics Journal

, Volume 60, Issue 9, pp 1572–1576 | Cite as

Influence of Magnetite Nanoparticles on the Dielectric Properties of Metal Oxide/Polymer Nanocomposites Based on Polypropylene

  • A. A. Maharramov
  • M. A. Ramazanov
  • Luca Di Palma
  • H. A. Shirinova
  • F. V. Hajiyeva
Article
  • 14 Downloads

Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe3O4) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 102–106 Hz and temperature interval of 298–433 K. The frequency and temperature dependences of the dielectric permittivity ε, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe3O4) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe3O4 nanoparticles increases.

Keywords

nanocomposite materials polypropylene magnetic nanoparticles dielectric permittivity specific electric resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. Camargo, K. G. Satyanarayana, and F. Wypych, J. Materi. Res., 12, 1 (2009).CrossRefGoogle Scholar
  2. 2.
    T. Hanemann and D. V. Szabó, J. Mater., 3, 3468 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    H. Hua, L. Onyebueke, and A. Abatan, J. Mineral. Mater. Characterizat. Eng., 9, 275 (2010).CrossRefGoogle Scholar
  4. 4.
    A. Thabet, Y. A. Mobarak, and M. Bakry, J. Eng. Sci., 39, 337 (2011).Google Scholar
  5. 5.
    H. Shirinova, L. D. Palma, F. Sarasini, et al., J. Chem. Eng. Trans., 47, 103 (2016).Google Scholar
  6. 6.
    A. M. Maharramov, M. A. Ramazanov, A. B. Ahmadova, et al., J. Nanomater. Biostruct., 11, 365 (2016).Google Scholar
  7. 7.
    A. M. Maharramov, M. A. Ramazanov, R. A. Alizade, and P. B. Asilbeyli, J. Nanomater. Biostruct., 8, 1447 (2013).Google Scholar
  8. 8.
    A. M. Magerramov, M. A. Ramazanov, and F. V. Hajiyeva, J. Am. Sci., 5, No. 6, 95 (2009).Google Scholar
  9. 9.
    A. M. Magerramov, M. A. Ramazanov, and F. V. Hajiyeva, J. Optoelectron. Adv., 2, No. 11, 743 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Maharramov
    • 1
  • M. A. Ramazanov
    • 1
  • Luca Di Palma
    • 2
  • H. A. Shirinova
    • 1
  • F. V. Hajiyeva
    • 1
  1. 1.Baku State UniversityBakuAzerbaijan
  2. 2.Sapienza University of RomeRomeItaly

Personalised recommendations