Skip to main content
Log in

Step Flow Model of Radial Growth and Shape Evolution of Semiconductor Nanowires

  • Published:
Russian Physics Journal Aims and scope

A model of radial growth of vertically aligned nanowires (NW) via formation and propagation of monoatomic steps at nanowire sidewalls is developed. The model allows to describe self-consistently the step dynamics and the axial growth of the NW. It is shown that formation of NWs with an abrupt change of wire diameter and a non-tapered section at the top might be explained by the bunching of sidewall steps due to the presence of a strong sink for adatoms at the NW top. The Ehrlich–Schwoebel barrier for the attachment of adatoms to the descending step favors the step bunching at the beginning of the radial growth and promotes the decay of the bunch at a later time of the NW growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Semiconductors, 43, 1539 (2009).

    Article  ADS  Google Scholar 

  2. Y. R. Yang and M. Fardy, Nano Lett., 10, 1529 (2010).

    Article  ADS  Google Scholar 

  3. A. A. Chernov: Modern Crystallography III. Crystal Growth, Springer-Verlag, Berlin, Heidelberg (1984).

  4. V. G. Dubrovskii: Theory of Formation of Epitaxial Structures [in Russian], Fizmatlit, Moscow (2009).

  5. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, et al., Phys. Rev. E., 77, 031606 (2008).

    Article  ADS  Google Scholar 

  6. V. G. Dubrovskii, M. A. Timofeeva, M. Tchernycheva, A. D. Bolshakov, Semiconductors, 47, 50 (2013).

    Article  ADS  Google Scholar 

  7. M. Tchernycheva, L. Travers, G. Patriarche, et al., J. Appl. Phys., 102, 094313 (2007).

    Article  ADS  Google Scholar 

  8. M. C. Plante and R. R. LaPierre, J. Appl. Phys., 105, 114304 (2009).

    Article  ADS  Google Scholar 

  9. Y. Greenberg , A. Kelrich, Y. Calahorra, et al., J. Cryst. Growth., 389, 103 (2014).

    Article  ADS  Google Scholar 

  10. G. Ehrlich and F. G. Hudda, J. Chem. Phys., 44, 1039 (1966).

    Article  ADS  Google Scholar 

  11. R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys., 37, 3682 (1966).

    Article  ADS  Google Scholar 

  12. V. G. Dubrovskii and Yu.Yu. Hervieu, J. Cryst. Growth., 401, 431 (2014).

    Article  Google Scholar 

  13. S. N. Filimonov and Yu.Yu. Hervieu, e-J. Surf. Sci. Nanotech., 12, 68 (2014).

  14. S. N. Filimonov and Yu.Yu. Hervieu, J. Cryst. Growth., 427, 60 (2015).

    Article  ADS  Google Scholar 

  15. H.-C. Jeong, E. D. Williams, Surf. Sci. Rep., 34, 171 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Filimonov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 73–78, August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filimonov, S.N., Hervieu, Y.Y. Step Flow Model of Radial Growth and Shape Evolution of Semiconductor Nanowires. Russ Phys J 59, 1206–1212 (2016). https://doi.org/10.1007/s11182-016-0892-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0892-7

Keywords

Navigation