Advertisement

Russian Physics Journal

, Volume 59, Issue 8, pp 1206–1212 | Cite as

Step Flow Model of Radial Growth and Shape Evolution of Semiconductor Nanowires

  • S. N. Filimonov
  • Yu. Yu. Hervieu
Article
  • 34 Downloads

A model of radial growth of vertically aligned nanowires (NW) via formation and propagation of monoatomic steps at nanowire sidewalls is developed. The model allows to describe self-consistently the step dynamics and the axial growth of the NW. It is shown that formation of NWs with an abrupt change of wire diameter and a non-tapered section at the top might be explained by the bunching of sidewall steps due to the presence of a strong sink for adatoms at the NW top. The Ehrlich–Schwoebel barrier for the attachment of adatoms to the descending step favors the step bunching at the beginning of the radial growth and promotes the decay of the bunch at a later time of the NW growth.

Keywords

epitaxy nanowires surface diffusion steps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Semiconductors, 43, 1539 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    Y. R. Yang and M. Fardy, Nano Lett., 10, 1529 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Chernov: Modern Crystallography III. Crystal Growth, Springer-Verlag, Berlin, Heidelberg (1984).Google Scholar
  4. 4.
    V. G. Dubrovskii: Theory of Formation of Epitaxial Structures [in Russian], Fizmatlit, Moscow (2009).Google Scholar
  5. 5.
    V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, et al., Phys. Rev. E., 77, 031606 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    V. G. Dubrovskii, M. A. Timofeeva, M. Tchernycheva, A. D. Bolshakov, Semiconductors, 47, 50 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    M. Tchernycheva, L. Travers, G. Patriarche, et al., J. Appl. Phys., 102, 094313 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    M. C. Plante and R. R. LaPierre, J. Appl. Phys., 105, 114304 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Greenberg , A. Kelrich, Y. Calahorra, et al., J. Cryst. Growth., 389, 103 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    G. Ehrlich and F. G. Hudda, J. Chem. Phys., 44, 1039 (1966).ADSCrossRefGoogle Scholar
  11. 11.
    R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys., 37, 3682 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    V. G. Dubrovskii and Yu.Yu. Hervieu, J. Cryst. Growth., 401, 431 (2014).CrossRefGoogle Scholar
  13. 13.
    S. N. Filimonov and Yu.Yu. Hervieu, e-J. Surf. Sci. Nanotech., 12, 68 (2014).Google Scholar
  14. 14.
    S. N. Filimonov and Yu.Yu. Hervieu, J. Cryst. Growth., 427, 60 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    H.-C. Jeong, E. D. Williams, Surf. Sci. Rep., 34, 171 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations