Russian Physics Journal

, Volume 59, Issue 7, pp 938–943 | Cite as

Relaxation Dynamics of Ferroelectric Liquid Crystals in Pulsed Electric Field

  • A. A. Kudreyko
  • N. G. Migranov
  • D. N. Migranova

In this contribution we report a theoretical study of relaxation processes in surface-stabilized ferroelectric liquid crystals with spontaneous polarization. The influence of pulsed electric field on the behavior of ferroelectric liquid crystal in the SmC* phase, which is placed in a thin cell with strong anchoring of SmC* molecules with the boundary substrate, is studied. In the vicinity of the substrate interface, temporal dependence of the azimuthal motion of the director induced by electric field is obtained. The response to the external distortion of ferroelectric liquid crystal confined between two microstructured substrates is the occurrence of periodic temporal formation of solitons connected with the distortion of the director field n in the sample bulk. The interplay between microstructured substrates and director distribution of the ferroelectric SmC* phase is explained by the Frenkel–Kontorova model for a chain of atoms, but adapted for the continuum problem.


surface-stabilized ferroelectric liquid crystal thin films dynamic response Frenkel-Kontorova model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Pasechnik, V. G. Chigrinov, and D. V. Shmeliova, Liquid Crystals. Viscous and Elastic Properties, Weinheim: Wiley-VCH (2009).Google Scholar
  2. 2.
    J. P. F. Lagerwall and F. Giesselmann, Chem. Phys. Chem., 7, 20–45 (2006).Google Scholar
  3. 3.
    N. G. Migranov and A. A. Kudreyko, Chin. Phys. B., 24, 7, 076101 (2015).CrossRefGoogle Scholar
  4. 4.
    P. V. Dolganov, JETP Letters, 100, No. 1, 59-69 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    W. Jeżewski, I. Śilwa, and W. Kuczyński, Eur. Phys. J. E., 36, 2 (2013).CrossRefGoogle Scholar
  6. 6.
    S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals, Weinheim: Wiley-VCH (1999).CrossRefGoogle Scholar
  7. 7.
    H. Furue, T. Horiguchi, M. Yamamichi, et al., Jpn. J. Appl. Phys., 53, 09PC03 (2014).Google Scholar
  8. 8.
    O. M. Braun and Yu. S. Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications, Springer-Verlag, Berlin (2004).CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. A. Kudreyko
    • 1
  • N. G. Migranov
    • 2
  • D. N. Migranova
    • 2
  1. 1.Ufa State Petroleum Technological UniversityUfaRussia
  2. 2.Bashkir State Pedagogical UniversityUfaRussia

Personalised recommendations