Advertisement

Russian Physics Journal

, Volume 59, Issue 6, pp 900–906 | Cite as

Application of a Tangential Magnetic Field and Negative Repetitively Pulsed Bias for Suppression of Vacuum-Arc Copper Macroparticles

  • A. I. Ryabchikov
  • P. S. Anan’in
  • A. E. Shevelev
PLASMA PHYSICS
  • 25 Downloads

The joint effect of magnetic fields normal and tangential to the cathode surface and of short-pulse highfrequency bias potential of negative polarity on the accumulation of macroparticles on the potential target immersed in copper vacuum-arc plasma is studied. It is shown that the application of a vacuum-arc evaporator with the magnetic field tangential to the cathode surface reduces by 5 times generation of copper macroparticles in comparison with an axially symmetric vacuum-arc evaporator in which the magnetic field normal to the working cathode surface is used. It is established that the joint action of the tangential field and short-pulse high-frequency bias potential makes it possible to decrease by 2–3 orders of magnitude the density of copper macroparticles on the target surface.

Keywords

vacuum-arc discharge metal plasma microdrop fraction high-frequency short-pulse negative bias potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Plyutto, V. N. Ryzhkov, and A. T. Kapin, J. Exp. Theor. Phys., 20, 328 (1965).Google Scholar
  2. 2.
    V. M. Lunev, V. G. Padalka, and V. M. Khoroshikh, Instrum. Exp. Tech., 19, 465 (1976).Google Scholar
  3. 3.
    N. P. Kondrat’eva, N. N. Koval’, Yu. D. Korolev, and P. M. Schanin, J. Phys., D32, 699 (1999).ADSGoogle Scholar
  4. 4.
    I. I. Aksenov, V. A. Belous, V. G. Padalka, and V. M. Khoroshikh, Prib. Tekh. Eksp., 21, 236 (1978).Google Scholar
  5. 5.
    A. Anders, Surf. Coat. Technol., 120–121, 319 (1999).CrossRefGoogle Scholar
  6. 6.
    A. I. Ryabchikov, I. A. Ryabchikov, I. B. Stepanov, and Yu. P. Usov, Surf. Coat. Technol., 201 (15), 6523 (2007).CrossRefGoogle Scholar
  7. 7.
    P. Swift, J. Phys., D29, 2025 (1996).ADSGoogle Scholar
  8. 8.
    C. N. Tau, E. S. Koh, and K. Akari, Surf. Coat. Technol., 43–44, 324 (1990).CrossRefGoogle Scholar
  9. 9.
    A. I. Ryabchikov, D. O. Sivin, and A. I. Bumagina, Appl. Surf. Sci., 310, 130 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    A. I. Ryabchikov, I. A. Ryabchikov, and I. B. Stepanov, Vacuum, 78, 331–336 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    D. Lafferti, Vacuum Arcs [Russian translation], V. I. Rakhovskii, ed., Mir, Moscow (1982).Google Scholar
  12. 12.
    J. E. Daalder, J. Phys., D9, 2379–2395 (1975).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. I. Ryabchikov
    • 1
  • P. S. Anan’in
    • 1
  • A. E. Shevelev
    • 1
  1. 1.National Reseach Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations