Advertisement

Russian Physics Journal

, Volume 59, Issue 6, pp 775–781 | Cite as

The Influence of Carbon Nanofillers on Structure-Sensitive Characteristics of a Polyurethane-Base Resistive Composite

  • A. I. Potekaev
  • T. D. Malinovskaya
  • S. V. Melentyev
  • I. A. Shulepov
Article

The effect of the nature of carbon nanofillers on the structure-sensitive characteristics of resistive composites with polyurethane binders is investigated. The influence of the size, shape, concentration of carbon nanofibers (K-163 channel black, GE-3 graphite element, C-1 colloid graphite) and the method of their introduction into the binder on the formation of an electrically conductive mesh in the structure of the composite is identified. It is experimentally found that an introduction of C-1 colloid graphite ensures optimal parameters of specific volume resistivity, hardness, and adhesion strength, as well as low values of the percolation threshold.

Keywords

RCM polyurethane lacquer technical-grade carbon graphite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Kozlov and Yu. S. Lipatov, Composite Interfaces, 9, No. 6, 509–527 (2002).CrossRefGoogle Scholar
  2. 2.
    J. M. Ziman, Models of Disorder, Cambridge University Press (1979).Google Scholar
  3. 3.
    B. I. Shklovskii, A. L. Efros, Electronic Properties of Doped Semiconductors, Springer Science & Business Media (2013).Google Scholar
  4. 4.
    I. A. Chmutin, S. V. Letyagin, V. G. Shevchenko, and A. T. Ponomarenko, Polymer Science, 36, No. 4, 576–588 (1994).Google Scholar
  5. 5.
    T. D. Malinovskaya and S. V. Melentyev, Russ. Phys. J., 56, No. 8, 970–972 (2013).CrossRefGoogle Scholar
  6. 6.
    I. I. Vishnyakov, Chemistry and Technology of HMCs [in Russian] in: Scientific Library of Dissertations and Author’s Abstracts, 6, 130–147 (1975).Google Scholar
  7. 7.
    V. S. Krikorov and L. A. Kolmakova, Electroconducting Polymer Materials [in Russian], Energoatomizdat, Moscow (1984).Google Scholar
  8. 8.
    V. A. Sotskov and S. V. Karpenko, Technical Physics (ZTF), 73, No. 1, 100–103 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    L. S. Sheinina, T. E. Lipatova, and L. Yu. Vladimirova, Zh. Vysokomolek. Soed., A23, No.3, 559–565 (1981).Google Scholar
  10. 10.
    M. T. Bryk, Destruction of Filled Polymers [in Russian], Khimiya, Moscow (1996).Google Scholar
  11. 11.
    Yu. K. Glotova, V. I. Irzhak, and V. G. Steinberg, Zh. Vysokomolek. Soed., B24, No. 5, 339–343 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. I. Potekaev
    • 1
  • T. D. Malinovskaya
    • 1
  • S. V. Melentyev
    • 2
  • I. A. Shulepov
    • 3
  1. 1.V. D. Kuznetsov Siberian Physical-Technical Institute at National Research Tomsk State UniversityTomskRussia
  2. 2.Tomsk State Architecture and Building UniversityTomskRussia
  3. 3.Physical Technical Institute at Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations