Advertisement

Russian Physics Journal

, Volume 59, Issue 4, pp 484–489 | Cite as

Emission from Polymethyl Methacrylate Irradiated by a Beam of Runaway Electrons of Subnanosecond Pulse Durations

  • E. Kh. Baksht
  • A. G. Burachenko
  • D. V. Beloplotov
  • V. F. Tarasenko
Article

Spectral and amplitude-temporal characteristics of emission from polymethyl methacrylate (fiberglass, PMMA) irradiated with a beam of runaway electrons of subnanosecond duration are investigated. It is found that at the beam current pulse duration within 200–600 ps at half maximum and the beam current density 10–200 A/cm2, the intensity maximum is registered at the wavelength ~490 nm and the emission pulse FWHM in the visible spectrum is ~1.5 ns at the half width. It is shown that the main contribution into the emission comes from luminescence.

Keywords

PMMA luminescence beam of runaway electrons Cherenkov radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. N. Elberson, Y. Ping, R. L. She epherd, et al., Rev. Sci. Instrum., 80, No. 2, 023302 (2009).Google Scholar
  2. 2.
    L. Jakubowski, M. J. Sadowski, J. Zebrowski, et al., Rev. Sci. Instrum. 81, No. 1, 013504 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    V. Ginis, J. Danckaert, I. Veretennicoff, et al., Phys. Rev. Lett., 113, No. 16, 167402 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    L. P. Babich, T. V. Loiko, and A. V. Rodigin, Doklady Akad. Nauk, 457, No. 6, 646–649 (2014).Google Scholar
  5. 5.
    L. P. Babich, T. V. Loiko, and A. V. Rodigin, IEEE Trans. Plasma Sci., 42, No. 4, 948–952 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    V. F. Tarasenko, E. Kh. Baksht, D. V. Beloplotov, et al., JETP Letters, 102, Issue 6, 350–354 (2015).Google Scholar
  7. 7.
    Yu. A. Andreev, I. D. Kostyrya, V. I. Koshelev, and V. F. Tarasenko, JTP, 76, Issue 5, 105–111 (2014).Google Scholar
  8. 8.
    I. D. Kostyrya and V. F. Tarasenko, Izv. Vyssh.Uchebn. Zaved. Fizika, 57, No.12/2, 225–229 (2014).Google Scholar
  9. 9.
    V. F. Tarasenko, Plasma Physics Reports, 37, 409 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    I. D. Kostyrya, D.V. Rybka, and V. F. Tarasenko, Instruments and Experimental Techniques, 55, No. 1, 72–77 (2012).CrossRefGoogle Scholar
  11. 11.
    E. Kh. Baksht, A. G. Buranchenko, and V. F. Tarasenko, JTP Letters, 36, Issue 21, 102–110 (2010).Google Scholar
  12. 12.
    V. F. Tarasenko, E.Kh. Baksht, A. G. Burachenko, Plasma Devices and Operation, 16, No. 4, 267–298 (2008).CrossRefGoogle Scholar
  13. 13.
    A. G. Buranchenko and V. F. Tarasenko, JTP Letters, 36, Issue 24, 85–94 (2010).Google Scholar
  14. 14.
    V. F. Tarasenko, V. M. Orlovskii, and S. A. Shunailov, Russ. Phys. J., 45, No. 3, 325–327 (2003).CrossRefGoogle Scholar
  15. 15.
    J. V. Jelly, Cherenkov’s Radiation and its Application, N.Y, Pergamon (1958).Google Scholar
  16. 16.
    A. V. Kozyrev, V. Yu. Kozhevnikov, M. S. Vorobyev, et al., Laser and Particle Beams, 33, 183–192 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    V. F. Tarasenko, E.Kh. Baksht, A. G. Burachenko, Russ. Phys. J., 58, No. 12, 1702–1710 (2016).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. Kh. Baksht
    • 1
  • A. G. Burachenko
    • 1
    • 2
  • D. V. Beloplotov
    • 1
    • 2
  • V. F. Tarasenko
    • 1
    • 2
  1. 1.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations