Advertisement

Russian Physics Journal

, Volume 59, Issue 3, pp 365–373 | Cite as

Special Features of the Structure of Secular Resonances in the Dynamics of Near-Earth Space Objects

  • T. V. Bordovitsyna
  • I. V. Tomilova
Article

The special features of the structure of secular resonances in the near-earth orbital space bounded by the following range of orbital parameters: semimajor axis from 8000 to 55 000 km, inclination from 0 to 90°, and eccentricity equal to 0.01, 0.6, and 0.8 are analyzed. The influence of stable and unstable secular resonances on the long-term orbital evolution of near-earth space objects is also considered. It is demonstrated that the joint effect of the stable secular resonances of different spectral classes does not violate the regularity of motion. The chaoticity arises when stable secular resonances of one spectral class are imposed.

Keywords

artificial Earth satellites secular resonances dynamic evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. V. Bordovitsyna et al., Astron. Vestn., No. 5, 356–368 (2012).Google Scholar
  2. 2.
    I. V. Tomilova, I. N. Chuvashov, and T. V. Bordovitsyna, Izv. Vyssh. Uchebn. Zaved., Fiz., 56, No. 10/2, 159–165 (2013).Google Scholar
  3. 3.
    T. V. Bordovitsyna and I. V. Tomilova, Russ. Phys. J., 57, No. 4, 516–524 (2014).CrossRefGoogle Scholar
  4. 4.
    T. V. Bordovitsyna and I. V. Tomilova, Russ. Phys. J., 57, No. 6, 819–827 (2014).CrossRefGoogle Scholar
  5. 5.
    T. V. Bordovitsyna et al., Astron. Vestn., No. 4, 280–289 (2014).Google Scholar
  6. 6.
    A. G. Aleksandrova, I. V. Tomilova, and T. V. Bordovitsyna, Izv. Vyssh. Uchebn. Zaved., Fiz., 57, No. 10/2, 95–102 (2014).Google Scholar
  7. 7.
    G. N. Duboshin, Reference Manual on Celestial Mechanics and Astrodynamics [in Russian], Nauka, Moscow (1976).Google Scholar
  8. 8.
    N. V. Yemel’yanov, in: Advances in Science and Technology. Ser. Space Research, Vol. 15 [in Russian] (1980), pp. 44–63.Google Scholar
  9. 9.
    A. Morbidelli, Modern Celestial Mechanics: Aspects of Solar System Dynamics, London: Taylor & Francis (2002).Google Scholar
  10. 10.
    C. D. Murray and S. F. Dermott, Solar System Dynamics [Russian translation], Fizmatlit, Moscow (2009).Google Scholar
  11. 11.
    T. V. Bordovitsyna, V. A. Avdyushev, I. N. Chuvashov, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 52, No. 10/2, 5–11 (2009).Google Scholar
  12. 12.
    A. J. Rosengren et al., Monthly Notices of the Royal Astronomical Society, 449, No. 4, 3522–3526 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    J. Daqun et al., Celest. Mech. Dyn. Astr. Published Online (02 January 2016).Google Scholar
  14. 14.
    B. V. Chirikov, Phys. Rep., 52, 263–379 (1979).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    P. M. Cincotta et al., Physica, D182, 151–178 (2003).ADSMathSciNetGoogle Scholar
  16. 16.
    T. V. Bordovitsyna, A. G. Aleksandrova, and I. N. Chuvashov, Izv. Vyssh. Uchebn. Zaved., Fiz., 53, No. 8/2, 14–21 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations