Advertisement

Russian Physics Journal

, Volume 59, Issue 2, pp 240–249 | Cite as

Group of Havrda–Charvat–Daroczy Entropy Vectors in Nonextensive Statistical Mechanics

  • R. G. Zaripov
Article

An Abelian group of three-dimensional Havrda–Charvat–Daroczy entropy vectors that depend on three distributions is defined, and the composition law of vectors with quadratic nonlinearity is determined. A geometric representation of the group in global four-dimensional Finsler space is considered. Properties of nonextensive entropy vectors that depend on three distributions are derived. An additive angular measure and a three-dimensional angular vector parameter are defined.

Keywords

nonextensivity four-dimensional geometry group entropy Hadamard matrix conformality entropy vector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World, Springer, New York (2009).MATHGoogle Scholar
  2. 2.
    R. G. Zaripov, Principles of Nonextensive Statistical Mechanics and The Geometry of Measures of Disorder and Order [in Russian], Kazan’ State Technical University Publishing House, Kazan’ (2010).Google Scholar
  3. 3.
    J. Naudts, Generalized Thermostatistics, Springer, Berlin (2011).CrossRefMATHGoogle Scholar
  4. 4.
    J. Havrda and F. Charvat, Kybernetika, 3, 30 (1967).MathSciNetGoogle Scholar
  5. 5.
    Z. Daroczy, Inform. Control, 16, 36 (1970).MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Renyi, Probability Theory, North-Holland Publ. Co., Amsterdam (1970).MATHGoogle Scholar
  7. 7.
    J. Feder, Fractals, Plenum Press, New York (1988).CrossRefMATHGoogle Scholar
  8. 8.
    N. Bourbaki, Elements of Mathematics: Integration, Springer, Berlin (2004).CrossRefMATHGoogle Scholar
  9. 9.
    R. G. Zaripov, Russ. Phys. J., 52, No. 2, 200 (2009).MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. G. Zaripov, Russ. Phys. J., 55, No. 1, 17 (2012).MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. G. Zaripov, Russ. Phys. J., 57, No. 1, 6 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin (1959).CrossRefMATHGoogle Scholar
  13. 13.
    B. Riemann, Abhandlungen der Königl. Gesellshaft der Wissenschaften zu Göttingen, 13, 14 (1867).Google Scholar
  14. 14.
    R. G. Zaripov, Russ. Phys. J., 57, No. 7, 861 (2014).CrossRefGoogle Scholar
  15. 15.
    R. G. Zaripov, in: Recent Problems in Field Theory 2005–2006 [in Russian], A. V. Aminova, ed., Kazan’ State University Publishing House, Kazan’ (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Mechanics and Engineering of the Kazan’ Scientific Center of the Russian Academy of SciencesKazan’Russia

Personalised recommendations