Advertisement

Russian Physics Journal

, Volume 59, Issue 2, pp 190–196 | Cite as

Application of a Theoretical Model of State Equation for Calculation of N2, O2, and CO2 Shock Adiabatic Curves

  • Yu. A. Bogdanova
  • S. A. Gubin
  • S. B. Victorov
  • A. A. Anikeev
OPTICS AND SPECTROSCOPY

An improved version of the equation of state model for two-component fluid mixtures whose molecules interact with the Exp-6 type potential has been proposed in previous works. The thermodynamic parameters of N2, O2, and CO2 shock-wave compression are calculated using the equation of state model for two-component fluid mixtures based on perturbation theory. Products of compression of these substances are two-component mixtures. Analogous calculations are also performed using an effective one-fluid model. A comparison of the results obtained with the available experimental data and results of Monte Carlo simulation allows us to conclude that the proposed theoretical equation of state model is superior to effective one-fluid model in accuracy and reliably describes the thermodynamic properties of two-component fluid mixtures in a wide pressure and temperature ranges.

Keywords

perturbation theory effective one-fluid model Hugoniot shock adiabatic curves Exp-6 intermolecular interaction potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. S. Kang, C. S. Lee, T. Ree, et al., J. Chem. Phys., 82, No. 1, 414–423 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    T. M. Reed and K. E. Gubbins, Applied Statistical Mechanics, McGraw-Hill, New York (1973).Google Scholar
  3. 3.
    F. H. Ree, J. Chem. Phys., 78, No. 1, 409–415 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    F. H. Ree, J. Chem. Phys., 81, No. 3, 1251–1263 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    F. Charlet, M.-L. Turkel, J.-F. Danel, et al., J. Appl. Phys., 84, No. 8, 4227–4238 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    L. E. Fried and W. M. Howard, J. Chem. Phys., 109, No. 17, 7338–7348 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    S. B. Victorov and S. A. Gubin, in: Proc. 13th Detonation Symposium (International), Norfolk (2006), pp. 7338–7348.Google Scholar
  8. 8.
    W. Byers Brown and T. V. Horton, Molec. Phys., 63, No. 1, 125 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. A. Bogdanova, S. A. Gubin, S. B. Victorov, et al., Russ. Phys. J., 53, No. 2, 114–122 (2010).CrossRefGoogle Scholar
  10. 10.
    Yu. A. Bogdanova, S. A. Gubin, S. B. Victorov, et al., Vestnik Nacional’nogo issledovatel’skogo yadernogo universiteta “MEPhI,” 1, No. 2, 172 (2012).Google Scholar
  11. 11.
  12. 12.
    W. J. Nellis, H. B. Radousky, D. C. Hamilton, et al., J. Chem. Phys., 94, No. 3, 2244–2257 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    P. M. Stanley, ed., LASL Shock Hugoniot Data, University of California Press (1980).Google Scholar
  14. 14.
    W. J. Nellis and A. C. Mitchell, J. Chem. Phys., 73, No. 12, 6137 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yu. A. Bogdanova
    • 1
  • S. A. Gubin
    • 1
  • S. B. Victorov
    • 2
  • A. A. Anikeev
    • 1
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.OpenSearchServerParisFrance

Personalised recommendations