Advertisement

Russian Physics Journal

, Volume 58, Issue 12, pp 1753–1759 | Cite as

The Influence of Hydrogen on Shape Memory Effect and Superelasticity in [001]-Oriented FeNiCoAlTi Single Crystals

  • Yu. I. Chumlyakov
  • I. V. Kireeva
  • Yu. N. Platonova
Article
  • 43 Downloads

Using [001]-oriented single crystals of an iron-based alloy (Fe – 28% Ni – 17% Co – 11.5% Al – 2.5% Ti at.%), which were aged at 973 K for 7 h, the influence of hydrogen on the axial-stress temperature response σ0.1(Т), the values of shape-memory effect (SME) and superelasticity (SE) is investigated during thermoelastic γ–α'-martensitic transformation (MT) (γ-FCC – face centered lattice, α'-BCT – body centered tetragonal lattice) under tensile conditions. It is found that saturation of [001]-oriented single crystals of the Fe – 28% Ni – 17% Co – 11.5% Al – 2.5% Ti alloy with hydrogen within 2 h at Т = 300 K and current density j = 50 mA/cm2 results in lower starting temperature, Ms, of a forward MT during cooling and Md temperature, increased strength properties of the high-temperature phase at Md temperature and wider temperature range of SE observation compared to hydrogen-free crystals. It is shown that hydrogen affects but only slightly the SME and SE values, the temperature and stress hysteresis under the above saturation mode. In [001]-oriented crystals aged at 973 K for 7 h, which are saturated with hydrogen and hydrogen-free, the SME and SE values are found to be equal to 7.8–8 and 6.5–6.9%, respectively.

Keywords

single crystals γ–α'-thermoelastic martensitic transformation shape memory effect superelasticity hydrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Efimenko, Izv. Vyssh. Uchebn. Zaved. Metally, No. 1, 119–127 (1992).Google Scholar
  2. 2.
    P. M. Scott, Corros. Sci., 25, 583–606 (1985).CrossRefGoogle Scholar
  3. 3.
    L. V. Spivak, Usp. Fiz. Nauk, 179, No. 9, 897–922 (2008).CrossRefGoogle Scholar
  4. 4.
    I. M. Robertson, Eng. Fract. Mech., 64, 649–673 (1999).CrossRefGoogle Scholar
  5. 5.
    H. K. Birnbaum, MRS Bulletin, No. 7, 479–485 (2003).Google Scholar
  6. 6.
    V. G. Gavriljuk, V. N. Shivanyuk, and J. Foct, Acta Mat., 51, 1293–1305 (2003).CrossRefGoogle Scholar
  7. 7.
    S. M. Teus, V. N. Shivanyuk, and V. G. Gavriljuk, Mater. Sci. Eng., A497, 290–294 (2008).CrossRefGoogle Scholar
  8. 8.
    M. Koyama, E. Akiyama, T. Sawaguchi, et al., Corros. Sci., 75, 345–353 (2013).CrossRefGoogle Scholar
  9. 9.
    I. A. Stepanov, Yu. M. Flomenblit, and V. A. Zaimovskii, Fiz. Met. Metalloved., 55, Issue 3, 612–614 (1983).Google Scholar
  10. 10.
    M. Kh. Shorshokhov, I. A. Stepanov, Yu. M. Flombelit, and V. V. Travkin, Fiz. Met. Metalloved., 60, Issue 3, 326–333–614 (1985).Google Scholar
  11. 11.
    B. L. Pelton, T. Slater, and A. R. Pelton, SMST-97, 395–400 (1997).Google Scholar
  12. 12.
    I. V. Kireeva, Yu. I. Chumlyakov, and Yu. N. Platonova, Tech. Phys. Lett., 41, No. 6, 284–287 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    Yu. N. Platonova, I. V. Kireeva, and Yu. I. Chumlyakov, IOP Conf. Ser.: Mater. Sci. Eng., 93, 012043–012048 (2015).Google Scholar
  14. 14.
    Y. Tanaka, Y. Himuro , R. Kainuma, et al., Science, 327, 1488–1490 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    Yu. I. Chumlyakov, I. V. Kireeva, E. Yu. Panchenko, et al., Russ. Phys. J., 54, No. 8, 937–948 (2011).CrossRefGoogle Scholar
  16. 16.
    K. Otsuka and C. M. Wayman, Shape Memory Materials, CUP (1998).Google Scholar
  17. 17.
    K. Otsuka. and X. Ren, Prog. Mater. Sci., 50, No. 5, 511–678 (2005).Google Scholar
  18. 18.
    Yu. I. Chumlyakov, I. V. Kireeva, A. D. Korotaev, et al., Russ. Phys. J., 39, No. 3, 189–210 (1996).CrossRefGoogle Scholar
  19. 19.
    I. V. Kireeva, Yu. I. Chumlyakov, A. V. Tverskov, and G. Mayer, Tech. Phys. Lett., 37, No. 11, 492–495 (2011).ADSGoogle Scholar
  20. 20.
    Yu. I. Chumlyakov, I. V. Kireeva, I. V. Kretinina, et al., Russ. Phys. J., 56, No. 8, 920–929 (2013).CrossRefGoogle Scholar
  21. 21.
    Yu. I. Chumlyakov, I. V. KireevaI, E. Yu. Panchenko, et al., Mater. Sci. Found., 8182, 107–173 (2015).Google Scholar
  22. 22.
    I. V. Kireeva, C. Picornell, J. Pons, et al., Acta Mat., 68, 127–139 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yu. I. Chumlyakov
    • 1
  • I. V. Kireeva
    • 1
  • Yu. N. Platonova
    • 1
  1. 1.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia

Personalised recommendations