Russian Physics Journal

, Volume 58, Issue 9, pp 1353–1357 | Cite as

Dynamics of Discrete Breathers in a Pt3Al Crystal

  • M. D. Starostenkov
  • A. I. Potekaev
  • S. V. Dmitriev
  • P. V. Zakharov
  • A. M. Eremin
  • V. V. Kulagina

The discrete breathers in a Pt3Al crystal, which exhibit soft (DB1) and hard (DB2) nonlinearity, are shown to possess a number of principal differences. Unlike an immobile and stable DB1, a DB2 breather is mainly localized on four Al atoms and is stretched along one of the close-packed rows of crystals. On the other hand, DB2 can displace hundreds of nanometers along one of the directions of close packing. Having localized a considerable amount of energy, both DB1 and DB2 breathers slowly emit it during their lifetime. A collision of DB1 and DB2 results in part of their energy being released into the Al sublattice, the larger part lost by DB2 that is destroyed faster than DB1. The DB2 breather can effectively transport the energy throughout the crystal, and a collision of DBs results in its considerable localization in the crystal. A capability of transferring the energy can thus give rise to structural transformations far from the focus of excitation of such localized objects.


discrete breather energy localization nonlinear dynamics method of molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Sievers and S. Takeno, Phys. Rev. Lett., 61, 970 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    G. M. Chechin, G. S. Dzhelauhova, and E. A. Mehonoshina, Phys. Rev. E, 74, 036608 (2006).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. V. Dmitriev, Pis’ma Mater., 1, Iss. 1, 78–83 (2011).Google Scholar
  4. 4.
    L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B, 81, 214306 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    N. N. Medvedev, M. D. Starostenkov, and M. E. Manley, J. Appl. Phys., 114, 213506 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    B. Liu, Yu. A. Baimova, S. V. Dmitriev, et al., J. Phys. D, 46, 305302 (2013).CrossRefGoogle Scholar
  7. 7.
    R. T. Murzaev, A. A. Kistanov, V. I. Dubinko, et al., Comp. Mater. Sci., 98, 88–92 (2015).CrossRefGoogle Scholar
  8. 8.
    Yu. A. Baimova, S. V. Dmitriev, and A. A. Kistanov, Russ. Phys. J., 56, No. 2, 180–191 (2013).CrossRefGoogle Scholar
  9. 9.
    A. I. Potekaev, S. V. Dmitriev, V. V. Kulagina, et al., Low-Stability Long-Period Structures in Metallic Systems [in Russian], Tomsk, NTL Publ. (2010).Google Scholar
  10. 10.
    N. N. Medvedev, M. D. Starostenkov, A. I. Potekaev, et al., Russ. Phys. J., 57, No. 3, 387–395 (2014).CrossRefGoogle Scholar
  11. 11.
    A. I. Potekaev, V. V. Kulagina, A. A. Chaplygina, et al., Russ. Phys. J., 55, No. 7, 1248–1257 (2012).Google Scholar
  12. 12.
    A. I. Potekaev, V. V. Kulagina, A. A. Chaplygina, et al., Russ. Phys. J., 56, No. 6, 620–629 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. D. Starostenkov
    • 2
  • A. I. Potekaev
    • 1
    • 5
  • S. V. Dmitriev
    • 3
    • 4
  • P. V. Zakharov
    • 6
  • A. M. Eremin
    • 6
  • V. V. Kulagina
    • 7
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.I. I. Polzunov Altai State UniversityBarnaulRussia
  3. 3.Institute for Metals Superplasticity Problems of the Russian Academy of SciencesUfaRussia
  4. 4.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  5. 5.V. D. Kuznetsov Siberian Physical Technical Institute at Tomsk State UniversityTomskRussia
  6. 6.Shukshin Altai State Academy of EducationBiyskRussia
  7. 7.Siberian State Medical UniversityTomskRussia

Personalised recommendations