Advertisement

Russian Physics Journal

, Volume 58, Issue 9, pp 1265–1270 | Cite as

Mathematical Model of the Information Factor of the Evolution of the Lemaitre–Friedmann Primordial Atoms in Superspace-Time

  • V. V. Lasukov
  • S. V. Rozhkova
  • M. O. Abdrashitova
  • E. E. Il’kin
  • V. V. Novoselov
Article

The nonlinear dynamics of the regular growth of the population of an aggregation of the Lemaitre–Friedmann primordial atoms has been investigated. It is analytically shown that there exists an asymptotic limit to the growth of the population of an aggregation of primordial atoms / galaxies. The nonlinear model, developed in this paper, of the information factor of the evolution of these primordial atoms can find wide application in biology, biological electronics, synthetic biology, in the mathematical history of the driving force of the noosphere, in cosmology, and in other areas of science and technology.

Keywords

Lemaitre–Friedmann primordial atom negative Scalars Burgers nonlinear differential equation information factor of the development of an aggregation of primordial-atoms/galaxies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. S. De Witt, Phys. Rev., D160, 1113 (1967).Google Scholar
  2. 2.
    B. S. De Witt, Phys. Rev., D162, 1195 (1967).Google Scholar
  3. 3.
    B. L. Al’tshuler and A. O. Barvinskii, Usp. Fiz. Nauk, 166, 46 (1996).Google Scholar
  4. 4.
    Yu. S. Vladimirov, in: Geometrophysics [in Russian], Binom, Moscow (2005), pp. 93–132.Google Scholar
  5. 5.
    C. W. Misner and J. A. Wheeler, Ann. Phys., 2, 525 (1957).MATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    J. A. Wheeler, Ann. Phys., 2, 604–614 (1957).MATHCrossRefADSGoogle Scholar
  7. 7.
    R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe, Vintage Books, Random House, New York (2004).Google Scholar
  8. 8.
    V. V. Lasukov, Russ. Phys. J., 55, No. 10, 1157–1168 (2013).MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. V. Lasukov, Russ. Phys. J., 50, No. 9, 898–904 (2007).MATHCrossRefGoogle Scholar
  10. 10.
    V. V. Lasukov, Russ. Phys. J., 50, No. 4, 326–332 (2007).MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    V. V. Lasukov, Russ. Phys. J., 51, No. 8, 815–821 (2008).MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    V. V. Lasukov, Russ. Phys. J., 52, No. 1, 1–10 (2009).MATHCrossRefGoogle Scholar
  13. 13.
    V. V. Lasukov, Russ. Phys. J., 52, No. 8, 816–822 (2009).MATHCrossRefGoogle Scholar
  14. 14.
    V. V. Lasukov and E. A. Moldovanova, Russ. Phys. J., 58, No. 1, 7–16 (2015).CrossRefGoogle Scholar
  15. 15.
    A. A. Logunov, in: Theory of the Gravitational Field [in Russian], Nauka, Moscow (2001), pp. 104–124.Google Scholar
  16. 16.
    A. A. Logunov, Usp. Fiz. Nauk, 165, 187–203 (1995).CrossRefGoogle Scholar
  17. 17.
    S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, Usp. Fiz. Nauk, 176, 1207–1225 (2006).CrossRefGoogle Scholar
  18. 18.
    S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, and N. P. Tkachenko, Elem. Chast. Atom. Yadra, 36, No. 5, 1003–1050 (2005).Google Scholar
  19. 19.
    A. A. Logunov and M. A. Mestvirishvili, Relativistic Theory of Gravitation [in Russian], Nauka, Moscow (1989).MATHGoogle Scholar
  20. 20.
    A. A. Logunov, Yu. M. Loskutov, and M. A. Mestvirishvili, Usp. Fiz. Nauk, 155, 369–395 (1988).MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    E. S. Wentzel, Probability Theory, Imported Publications, Chicago (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Novosibirks State UniversityNovosibirskRussia

Personalised recommendations