Advertisement

Russian Physics Journal

, Volume 58, Issue 6, pp 869–872 | Cite as

Electrodeposition of SnSbCu Alloy on Copper from an Electrolyte with Varied Content of Antimony Chloride

  • A. Kh. Valeeva
  • I. Sh. Valeev
Article
  • 35 Downloads

The microstructure and chemical composition of electrodeposited alloys of the SnSbCu system with varied concentration of antimony chloride in the electrolyte have been investigated. It is shown that during electrodeposition mechanical-mixture alloys are not formed, but rather intermetallic compounds. It is found that increasing the concentration of antimony chloride in the electrolyte leads to a decrease in the tin content and cracking of the coating.

Keywords

electrodeposition microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Khrushchov and A. D. Kuritsyna, Friction and Wear in Machines, Vol. 5 [in Russian], Izdat. AN SSSR, Moscow (1950), No. 5, 76–82.Google Scholar
  2. 2.
    V. A. Lashko and G. A. Konks, World Marine Diesel Construction. Concept Design, Analysis of International Experience, Mashinostroenie, Moscow (2005).Google Scholar
  3. 3.
    J. E. Mahan, Physical Vapor Deposition of Thin Films, John Wiley & Sons, New York (2000).Google Scholar
  4. 4.
    F. A. Sadykov, J. Mater. Eng. Perform., 4, No. 1, 102–104 (1995).CrossRefGoogle Scholar
  5. 5.
    F. A. Sadykov, V. A. Valitov, and N. P. Barykin, J. Mater. Eng. Perform., 6, No. 1, 73–76 (1997).CrossRefGoogle Scholar
  6. 6.
    F. A. Sadykov, N. P. Barykin, V. N. Danilenko, and I. Sh. Valeev, J. Mater. Eng. Perform., 12, No. 1, 29–30 (2003).CrossRefGoogle Scholar
  7. 7.
    L. G. Korshunov, N. I. Noskova, N. L. Chernenko, et al., Phys. Metals Metallogr., 108, No. 5, 519–526 (2009).CrossRefADSGoogle Scholar
  8. 8.
    P. M. Vyacheslavov, Electrolytic Deposition of Alloys [in Russian], Mashinostroenie, Moscow (1986).Google Scholar
  9. 9.
    G. I. Medvedev and N. A. Makrushin, J. Appl. Chem., 74, No. 8, 1400–1402 (2001).Google Scholar
  10. 10.
    G. I. Medvedev, N. A. Makrushin, and O. V. Ivanova, Russ. J. Appl. Chem., 77, No. 7, 1104–1107 (2004).CrossRefGoogle Scholar
  11. 11.
    G. I. Medvedev and N. A. Makrushin, Russ. J. Appl. Chem., 77, No. 11, 1781–1785 (2004).CrossRefGoogle Scholar
  12. 12.
    A. Kh. Valeeva, I. Sh. Valeev, R. F. Fazlyakhmetov, et al., J. Frict. Wear, 33, No. 1, 34–38 (2012).CrossRefGoogle Scholar
  13. 13.
    N. P. Fedot’ev, N. N. Bibikov, P. M. Vyacheslavov, and S. Ya. Grilikhes, Electrolytic Alloys [in Russian], MAShGIZ, Leningrad (1962).Google Scholar
  14. 14.
    S.-W. Chen, A.-R. Zi, W. Gierlotka, et al., Mat. Chem. Phys., 132, 703–715 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Metals Superplasticity Problems of the Russian Academy of SciencesUfaRussia

Personalised recommendations