Russian Physics Journal

, Volume 58, Issue 6, pp 828–832 | Cite as

Self-Diffusion Process in an FCC Crystal Caused by the Passage of a Shock Wave

  • A. V. Markidonov
  • M. D. Starostenkov
  • M. V. Smirnova

The method of molecular dynamics is used to investigate the self-diffusion processes in the nickel lattice activated by a shock wave. It is demonstrated that the main self-diffusion mechanism is crowdion one. Ranges of shock wave velocities are established in which anomalous decrease of the self-diffusion coefficient caused by the formation of crowdion complexes is observed. In addition, it is demonstrated that when the wave velocity increases, the self-diffusion coefficients approach values corresponding to those of the metal in the liquid state, and the defect migration energy decreases. These results are compared with the data obtained for the crystal lattice with a structural defect.


self-diffusion temperature interstitial atom crowdion complex stacking fault defect wave molecular dynamics method embedded atom method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Kalinichenko and V. E. Strel’nitskii, Vopr. Atomn. Nauki Tekhn. Ser. Fiz. Radiats. Povr. Radiats. Materialoved., 88, No. 5, 159–163 (2005).Google Scholar
  2. 2.
    V. V. Ovchinnikov, Usp. Fiz. Nauk, 178, No. 9, 991–1001 (2008).Google Scholar
  3. 3.
    Yu. V. Martynenko and P. G. Moskovkin, Neorgan. Mater., 34, No. 9, 1142–1144 (1998).Google Scholar
  4. 4.
    A. V. Markidonov, M. D. Starostenkov, and A. V. Yashin, Fund. Probl. Sovrem. Materialoved., 10, No. 1, 12–21 (2013).Google Scholar
  5. 5.
    M. D. Starostenkov, A. V. Markidonov, and E. P. Pavlovskaya, Vestn. Tambovsk. Univ. Ser. Estestv. Tekh. Nauki, 18, No. 4, Part 2, 1741–1743 (2013).Google Scholar
  6. 6.
    A. V. Markidonov, M. D. Starostenkov, and E. P. Pavlovskaya, Khim. Fiz. Mezoskop., 15, No. 3, 370–377 (2013).Google Scholar
  7. 7.
    XMD – Molecular Dynamics for Metals and Ceramics [Electronic resource], Mode of Access:
  8. 8.
    R. A. Johnson, Phys. Rev., B37, No. 8, 3924–3931 (1988).CrossRefADSGoogle Scholar
  9. 9.
    V. G. Chudinov, R. M. J. Cotterill, and V. V. Andreev, Phys. Status Solidi, A122, No. 1, 111–120 (1990).CrossRefADSGoogle Scholar
  10. 10.
    R. I. Garber and A. I. Fedorenko, Usp. Fiz. Nauk, 83, No. 3, 385–432 (1964).CrossRefGoogle Scholar
  11. 11.
    I. S. Grigor’ev and E. Z. Meilikhov, Physical Quanttities: A Handbook [in Russian], Energoatomizdat, Moscow (1991).Google Scholar
  12. 12.
    G. M. Poletaev and M. D. Starostenkov, Fiz. Tverd. Tela, 52, No. 6, 1075–1082 (2010).Google Scholar
  13. 13.
    A. V. Markidonov, M. D. Starostenkov, A. I. Potekaev, et al., Russ. Phys. J., 54, No. 11, 1241–1248 (2011).CrossRefGoogle Scholar
  14. 14.
    A. V. Markidonov, G. M. Poletaev, and M. D. Starostenkov, Fund. Probl. Sovr. Materialoved., 9, No. 2, 201–208 (2012).Google Scholar
  15. 15.
    B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Diffusion Thermodynamics and Kinetics in Solids [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  16. 16.
    F. J. Cherne and M. I. Baskes, Phys. Rev., B65, No. 2, 024209–024218 (2001).CrossRefADSGoogle Scholar
  17. 17.
    M. Gieb, J. Heieck, and W. Shüle, J. Nucl. Mater., 225, 85–96 (1995).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. V. Markidonov
    • 1
  • M. D. Starostenkov
    • 2
  • M. V. Smirnova
    • 3
  1. 1.T. F. Gorbachev Kuzbass State Technical UniversityNovokuznetskRussia
  2. 2.I. I. Polzunov Altai State Technical UniversityBarnaulRussia
  3. 3.Siberian State Industrial UniversityNovokuznetskRussia

Personalised recommendations