Russian Physics Journal

, Volume 58, Issue 6, pp 785–790 | Cite as

Energy Exchange Between the Discrete Breathers in Graphane

  • J. A. Baimova
  • S. V. Dmitriev

Discrete breathers in graphane (fully hydrogenated graphene) are studied by the molecular dynamics method. It has previously been demonstrated that in graphane, there are discrete breathers in the form of single hydrogen atoms oscillating with the big amplitude in the direction perpendicular to the graphane plane with a frequency lying in the bandgap of the phonon spectrum. In this work, the possibility of the existence of longlived clusters of discrete breathers of different configurations is shown, their properties are studied, and the possibility of energy exchange between the discrete breathers in the cluster is demonstrated. These results are important for the discussion of physical processes occurring during dehydrogenation of graphane at high temperatures, which, in turn, is of great importance for the development of the hydrogen storage and transport devices based on sp2-carbon materials.


graphane a discrete breather cluster energy exchange molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. H. F. Sluiter and Y. Kawazoe, Phys. Rev. B, 68, 085410 (2003).CrossRefADSGoogle Scholar
  2. 2.
    J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B, 75, 153401 (2007).CrossRefADSGoogle Scholar
  3. 3.
    D. C. Elias, et al., Science, 323, 610–613 (2009).CrossRefADSGoogle Scholar
  4. 4.
    T. Roman, W. A. Dino, H. Nakanishi, et al., Carbon, 45, 218–220 (2007).CrossRefGoogle Scholar
  5. 5.
    J. D. Jones, K. K. Mahajan, W. H. Williams, et al., Carbon, 48, 2335–2340 (2010).CrossRefGoogle Scholar
  6. 6.
    Q. X. Pei, Z. D. Sha, and Y. W. Zhang, Carbon, 49, 4752–4759 (2011).CrossRefGoogle Scholar
  7. 7.
    A. A. Dzhurakhalov and F. M. Peeters, Carbon, 49, 3258–3266 (2011).CrossRefGoogle Scholar
  8. 8.
    H. Sahin, C. Ataca, and S. Ciraci, Phys. Rev. B, 81, (2010) 205417.CrossRefADSGoogle Scholar
  9. 9.
    B. Liu, C. D. Reddy, J. W. Jiang, et al., Appl. Phys. Lett., 101, 211909 (2012).CrossRefADSGoogle Scholar
  10. 10.
    M. Wojtaszek, N. Tombros, A. Caretta, et al., J. Appl. Phys., 110, 063715 (2011).CrossRefADSGoogle Scholar
  11. 11.
    H. L. Gao, L. Wang, J. J. Zhao, et al., J. Phys. Chem. C, 115, 3236–3242 (2011).CrossRefGoogle Scholar
  12. 12.
    W. F. Chen, Z. Y. Zhu, S. R. Li, et al., Nanoscale, 4, 2124–2129 (2012).CrossRefADSGoogle Scholar
  13. 13.
    Z. Q. Luo, T. Yu, Z. H. Ni, et al., J. Phys. Chem. C, 115, 1422–1427 (2011).CrossRefGoogle Scholar
  14. 14.
    L. F. Xie, et al., Appl. Phys. Lett., 98, 193113 (2011).CrossRefADSGoogle Scholar
  15. 15.
    J. S. Burgess, B. R. Matis, J. T. Robinson, et al., Carbon, 49, 4420–4426 (2011).CrossRefGoogle Scholar
  16. 16.
    Z. M. Ao and F. M. Peeters, Appl. Phys. Lett., 96, 253106 (2010).CrossRefADSGoogle Scholar
  17. 17.
    F. D. Lamari and D. Levesque, Carbon, 49, 5196–5200 (2011).CrossRefGoogle Scholar
  18. 18.
    A. R. Muniz and D. Maroudas, J. Appl. Phys., 108, 113532 (2010).CrossRefADSGoogle Scholar
  19. 19.
    W. C. Xu, K. Takahashi, Y. Matsuo, et al., Int. J. Hydrogen Energy, 32, 2504– 2512 (2007).CrossRefGoogle Scholar
  20. 20.
    S. Flach and A. V. Gorbach, Phys. Rep., 467, 1–116 (2008).CrossRefADSGoogle Scholar
  21. 21.
    E. A. Korznikova, J. A. Baimova, S. V. Dmitriev, EPL, 102, No. 6, 60004 (2013).CrossRefADSGoogle Scholar
  22. 22.
    S. V. Dmitriev and J. A. Baimova, Pis’ma v Zh. Tekh. Fiz., 37, No. 10, 13–20 (2011).Google Scholar
  23. 23.
    J. A. Baimova, S. V. Dmitriev, and K. Zhou, Europhys. Lett., 100, 36005 (2012).CrossRefADSGoogle Scholar
  24. 24.
    I. P. Lobzenko and G. M. Chechin, Vestn. Nizhegor. Gosud. Univer., No. 4(1), 67–69 (2013).Google Scholar
  25. 25.
    S. V. Dmitriev, Letters on Materials, 1, No. 2, 78–83 (2011).MathSciNetGoogle Scholar
  26. 26.
    L. Z. Khadeeva, S. V. Dmitriev, and Yu. S. Kivshar’, Pis’ma v Zh. Eksp. Tekh. Fiz., 94, No. 7, 580–584 (2011).Google Scholar
  27. 27.
    G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, and D. S. Ryabov, Phys. Rev. B, 90, 045432 (2014).CrossRefADSGoogle Scholar
  28. 28.
    B. Liu, J. A. Baimova, S. V. Dmitriev, et al., J. Phys. D: Appl. Phys., 46, 305302 (2013).CrossRefGoogle Scholar
  29. 29.
    S. Plimpton, J. Comput. Phys., 117, 1–19 (1995).CrossRefADSMATHGoogle Scholar
  30. 30.
    S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys., 112, 6472–6486 (2000).CrossRefADSGoogle Scholar
  31. 31.
    K. A. Bukreeva, A. M. Iskandarov, S. V. Dmitriev, and Y. Umeno, Letters on Materials, 3, No. 4, 318–321 (2013).Google Scholar
  32. 32.
    B. Liu, J. A. Baimova, K. Zhou, et al., Appl. Phys. Lett., 101, No. 21, 211909 (2012).CrossRefADSGoogle Scholar
  33. 33.
    J. A. Baimova, K. Zhou, and B. Liu, Letters on Materials, 4, No. 2, 96–99 (2014).Google Scholar
  34. 34.
    J. A. Baimova, L. Bo, K. Zhou, et al., Europhys. Lett., 103, No. 4, 46001 (2013).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Metals Superplasticity Problems of the Russian Academy of SciencesUfaRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations