Skip to main content
Log in

The Features of Fracture Behavior of an Aluminum-Magnesium Alloy AMg6 Under High-Rate Straining

  • Published:
Russian Physics Journal Aims and scope

The results of investigation of fracture dynamics of rolled sheet specimens of an AMg6 alloy are presented for the range of strain rates from 10–3 to 103 s–1. It is found out that the presence of nanostructured surface layers on the thin AMg6 rolled sheets results in improved strength characteristics within the above range of strain rates. A modified model of a deforming medium is proposed to describe the plastic flow and fracture of the AMg6 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Albakri, F. Abu-Farha, and M. Khraisheh, Int. J. Mech. Sci., 66, 55–66 (2013).

    Article  Google Scholar 

  2. I. I. Cuesta, J. M. Alegre, and M. Lorenzo, Mater. Design., 54, 291–294 (2014).

    Article  Google Scholar 

  3. M. Abendroth and M. Kuna, Eng. Fract. Mech., 73, 710–725 (2006).

    Article  Google Scholar 

  4. RF Standard GOST 1497-84. Methods of Tensile Testing.

  5. RF Standard GOST 10510-80. Metals. Methods of Indentation of Sheets and Ribbons according to Ericksen.

  6. ASTM E643 – 09. Standard Test Method for Ball Punch Deformation of Metallic Sheet Material. Downloaded/printed by Tomsk State University pursuant to License Agreement. No further reproductions authorized.

  7. ASTM E8 – 04. Standard Test Methods for Tension Testing of Metallic Materials. Downloaded/printed by Tomsk State University pursuant to License Agreement. No further reproductions authorized.

  8. V. A. Skripnyak, E. G. Skripnyak, N. V. Skripnyak, and A. A. Kozulin, Izv. Vyssh. Uchebn. Zaved. Fiz., 53, No. 12/2, 235–242 (2010).

    Google Scholar 

  9. V. A. Skripnyak, E.G. Skripnyak, N.V. Skripnyak, et al., in: Proc. 19th European Conference on Fracture (ECF19). Kazan, Russia, 26–31 August, 2012.

  10. V. A. Skripnyak, E.G. Skripnyak, A. A. Kozulin, and V. V. Skripnyak, Izv. Vyssh. Uchebn. Zaved. Fiz., 55, No. 9/3, 109–113 (2012).

    Google Scholar 

  11. C. Rodriguez, J. Garcia Cabezas, E. Cardenas, et al., Welding Res., 88, 188–192 (2009).

    Google Scholar 

  12. W. K. Rule and S.E. Jones, Int. J. Impact Eng., 21, No. 8, 609–624(1998).

    Article  Google Scholar 

  13. T. J. Holmquist and G. R. Johnson, J. Appl. Phys., 91, 5858–5867 9 (2002).

  14. V. E. Panin and V. E. Egorushkin, Fiz. Mesomekh., 14, No. 3, 7–26 (2011).

    Google Scholar 

  15. E. V. Kozlov, L. I. Trishkina, N. A. Popova, and N. A. Koneva, Fiz. Mesomekh., 14, No. 3, 95–110 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Skripnyak.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 96–101, May, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skripnyak, N.V. The Features of Fracture Behavior of an Aluminum-Magnesium Alloy AMg6 Under High-Rate Straining. Russ Phys J 58, 691–697 (2015). https://doi.org/10.1007/s11182-015-0552-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0552-3

Keywords

Navigation