Advertisement

Russian Physics Journal

, Volume 58, Issue 5, pp 691–697 | Cite as

The Features of Fracture Behavior of an Aluminum-Magnesium Alloy AMg6 Under High-Rate Straining

  • N. V. Skripnyak
Article

The results of investigation of fracture dynamics of rolled sheet specimens of an AMg6 alloy are presented for the range of strain rates from 10–3 to 103 s–1. It is found out that the presence of nanostructured surface layers on the thin AMg6 rolled sheets results in improved strength characteristics within the above range of strain rates. A modified model of a deforming medium is proposed to describe the plastic flow and fracture of the AMg6 alloy.

Keywords

dynamic strength high strain rates aluminum alloys computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Albakri, F. Abu-Farha, and M. Khraisheh, Int. J. Mech. Sci., 66, 55–66 (2013).CrossRefGoogle Scholar
  2. 2.
    I. I. Cuesta, J. M. Alegre, and M. Lorenzo, Mater. Design., 54, 291–294 (2014).CrossRefGoogle Scholar
  3. 3.
    M. Abendroth and M. Kuna, Eng. Fract. Mech., 73, 710–725 (2006).CrossRefGoogle Scholar
  4. 4.
    RF Standard GOST 1497-84. Methods of Tensile Testing.Google Scholar
  5. 5.
    RF Standard GOST 10510-80. Metals. Methods of Indentation of Sheets and Ribbons according to Ericksen.Google Scholar
  6. 6.
    ASTM E643 – 09. Standard Test Method for Ball Punch Deformation of Metallic Sheet Material. Downloaded/printed by Tomsk State University pursuant to License Agreement. No further reproductions authorized.Google Scholar
  7. 7.
    ASTM E8 – 04. Standard Test Methods for Tension Testing of Metallic Materials. Downloaded/printed by Tomsk State University pursuant to License Agreement. No further reproductions authorized.Google Scholar
  8. 8.
    V. A. Skripnyak, E. G. Skripnyak, N. V. Skripnyak, and A. A. Kozulin, Izv. Vyssh. Uchebn. Zaved. Fiz., 53, No. 12/2, 235–242 (2010).Google Scholar
  9. 9.
    V. A. Skripnyak, E.G. Skripnyak, N.V. Skripnyak, et al., in: Proc. 19th European Conference on Fracture (ECF19). Kazan, Russia, 26–31 August, 2012.Google Scholar
  10. 10.
    V. A. Skripnyak, E.G. Skripnyak, A. A. Kozulin, and V. V. Skripnyak, Izv. Vyssh. Uchebn. Zaved. Fiz., 55, No. 9/3, 109–113 (2012).Google Scholar
  11. 11.
    C. Rodriguez, J. Garcia Cabezas, E. Cardenas, et al., Welding Res., 88, 188–192 (2009).Google Scholar
  12. 12.
    W. K. Rule and S.E. Jones, Int. J. Impact Eng., 21, No. 8, 609–624(1998).CrossRefGoogle Scholar
  13. 13.
    T. J. Holmquist and G. R. Johnson, J. Appl. Phys., 91, 5858–5867 9 (2002).Google Scholar
  14. 14.
    V. E. Panin and V. E. Egorushkin, Fiz. Mesomekh., 14, No. 3, 7–26 (2011).Google Scholar
  15. 15.
    E. V. Kozlov, L. I. Trishkina, N. A. Popova, and N. A. Koneva, Fiz. Mesomekh., 14, No. 3, 95–110 (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations