Skip to main content
Log in

Peculiarities of the Band Structure Formation in the Cu2O and Ag2O Crystals with a Cuprite Structure

  • Published:
Russian Physics Journal Aims and scope

Band structure, total and partial densities of states, charges at the lattice sites are calculated for the Cu2O and Ag2O crystals with the cuprite structure within the framework of the density functional theory in the pseudopotential and full-electron versions. Both variants of the calculation give similar band spectra and are in good agreement with the available experimental and theoretical data. The full-electron calculation results give a better agreement between the calculated and experimental band gaps. The genesis of the band spectra of crystals from the states of theirs sublattices is established. It is shown that the topological peculiarities of the crystal spectra of the degeneration and quasi-degeneration types are caused by the convolution of the sublattice spectra in the Brillouin zone of the crystal. The underestimated widths of the allowed sublattice valence bands relative to the crystal ones are caused by the significant hybridization interaction of sublattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Georgieva and M. Ristov, Solar Energy Materials & Solar Cells, No. 73, 67 (2002).

  2. M. Hara, T. Kondo, M. Komoda, et al., Chem. Commun., No. 3, 357 (1998).

  3. A. Filippetti and V. Fiorentini, Phys. Rev. B, No. 72, 035128 (2005).

  4. S. Yonezawa1 and Y. Maeno, Phys. Rev. B, No. 72, 180504(R) (2005).

  5. Zb. Wiśniewski, R. Wiśniewski, and J. L. Nowiński, Solid State Ionics, 157, No. 1–4, 275 (2003).

    Article  Google Scholar 

  6. H. Takahashi, N. Rikitake, T. Sakuma, and Y. Ishii, Solid State Ionics, 168, No. 1–2, 93 (2004).

    Article  Google Scholar 

  7. X. Y. Gao, S. Y. Wang, J. Li, et al., Thin Solid Films, 455–456, 438 (2004).

    Article  Google Scholar 

  8. R. Mittal, S. L. Chaplot, S. K. Mishia, and P. Bose, Phys. Rev. B, No. 75, 174303 (2007).

  9. M. T. Czyzyk, R. A. Groot, G. Dalba, et al., Phys. Rev. B, 39, No. 14, 9831 (1989).

    Article  ADS  Google Scholar 

  10. G. B. Hoflund, Z. F. Hazos, and G. N. Salaita, Phys. Rev. B, 62, No. 16, 11126 (2000).

    Article  ADS  Google Scholar 

  11. E. Ruiz, S. Alvarez, P. Alemany, and R. A. Evarestov, Phys. Rev. B, 56, No. 12, 7189 (1997).

    Article  ADS  Google Scholar 

  12. J. M. Zuo, M. Kim, M. O'Keeffe, and J. C. Spence, Nature, No. 401, 49 (1999).

  13. T. Lippmann and J. R. Schneider, Acta Cryst., A56, 575 (2000).

    Article  Google Scholar 

  14. R. Laskowski, P. Blaha, and K. Schwarz, Phys. Rev. B, No. 86, 155404 (2012).

  15. Yu. N. Zhuravlev, A. S. Poplavnoi, and B. A. Sechkarev, Zh. Nauchn. Prikladn. Fotograf., 47, No. 5, 33 (2002).

    Google Scholar 

  16. A. B. Gordienko, Yu. N. Zhuravlev, and D. G. Fedorov, Fiz. Tverd. Tela, No. 49, 216 (2007).

  17. F. Pei, S. Wu, G. Wang, et al., J. Korean Phys. Soc., No. 3, 1243 (2009).

  18. A. B. Gordienko and A. S. Poplavnoi, Phys. Stat. Sol. B, 202, No. 2, 941 (1997).

    Article  ADS  Google Scholar 

  19. Data base «Inorganic Crystal Structure Database», http://www.fiz-karlsruhe.de/ecid/Internet/en/DB/icsd/

  20. A. S. Poplavnoi, Materialoved., No. 9, 2, (2005).

  21. A. V. Kosobutskii, A. S. Poplavnoi, and A. V. Silin, Vestn. Kemerovo Gosuniver., No. 2, 74, (2006).

  22. X. Gonze, et al., Z. Kristallogr., 220, 558 (2005).

    Google Scholar 

  23. R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL 09 User’s Manual., University of Torino, Torino (2006).

    Google Scholar 

  24. R. Dovesi, et al., Z. Kristallogr., 220, 571 (2005).

    Google Scholar 

  25. M. F. Peintinger, O. Dе Vilela, and T. Bredow, J. Comput. Chem., No. 34, 451 (2013).

  26. R. Restori and D. Schwarzenbach, Acta Cryst., B42, 201 (1986).

    Article  Google Scholar 

  27. A. Kirfel and K. Eichhorn, Acta Cryst., A46, 271 (1990).

    Article  Google Scholar 

  28. A. V. Chichagov, et al., Kristallogr., 35, No. 3, 610 (1990).

    Google Scholar 

  29. P. Norby, R. E. Dinnebier, and A. N. Fitch, Inorg. Chem., No. 41(14), 3628 (2002).

  30. J. Ghijsen, L. H. Tjeng, J. Elp, et al., Phys. Rev. B, No. 38, 11322 (1988).

  31. L. H. Tjeng, M. B. Meinders, J. Elp, et al., Phys. Rev. B, No. 41, 3190 (1990).

  32. A. V. Kosobutskii and A. S. Poplavnoi, Russ. Phys. J., 49, No. 7, 81 (2006).

    Article  Google Scholar 

  33. S. S. Hafner and S. Nagel, Phys. Chem. Minerals, No. 9, 19 (1983).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 127–134, April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarechina, Е.S., Karzhavykh, D.S., Kravchenko, N.G. et al. Peculiarities of the Band Structure Formation in the Cu2O and Ag2O Crystals with a Cuprite Structure. Russ Phys J 58, 574–582 (2015). https://doi.org/10.1007/s11182-015-0536-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-015-0536-3

Keywords

Navigation