Russian Physics Journal

, Volume 58, Issue 4, pp 471–477 | Cite as

Nanostructural States and Properties of the Surfacing Formed on Steel by a Cored Wire

  • E. V. Kapralov
  • E. A. Budovskikh
  • V. E. Gromov
  • Yu. F. Ivanov

Structural-phase states and mechanical properties of electric arc surfacing by an EnDOtec DO*33 cored wire on a Hardox 400 steel are investigated. Formation of the multiphase state of the surfacing represented by grains of α-iron and inclusions of carbide phases based on iron, chromium, and niobium is revealed by the methods of electron diffraction microscopy and x-ray phase analysis. The additional treatment of the surfacing by a high-intensity electron beam is performed. Mutual arrangement of the grains of α-iron and particles of carbide phases is investigated. It is found that the surfacing layer is in the elastic-stressed state formed as a result of super-high heating and cooling rates initiated by the pulsed electron beam treatment. It is shown that the microhardness of the surfaced layer remains constant with the depth down to 4 mm and exceeds by a factor of 2.4 the microhardness of the substrate; the wear resistance of the surfacing is 3 times higher than that of the steel, and the friction coefficient of the surfacing is half that of the steel.


electric arc surfacing cored wire structural-phase states microhardness wear resistance friction coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. M. Kuskov, V. N. Skorokhodov, I. A. Ryabtsev, and I. S. Sarychev, Electroslag Surfacing [in Russian], Nauka i Tekhnologiya, Moscow (2001).Google Scholar
  2. 2.
    P. V. Gladkii, E. F. Perepletchikov, and I. A. Ryabtsev, Plasma Surfacing [in Russian], Ekotechnologiya, Kiev (2007).Google Scholar
  3. 3.
    E. V. Kapralov, S. V. Raikov, E. A. Budovskikh, et al., Fund. Probl. Sovrem. Materialoved., 11, No. 3, 334–339 (2014).Google Scholar
  4. 4.
    N. A. Popova, E. V. Niconenco, Yu. F. Ivanov, et al., Adv. Mater. Res., 1013, 194–199 (2014).CrossRefGoogle Scholar
  5. 5.
    E. V. Kapralov, S. V. Raikov, E. A. Budovskikh, et al., Bul. Russ. Acad. of Sci. Phys., 78, No. 10, 1015–1021 (2014).CrossRefADSGoogle Scholar
  6. 6.
    E. A. Budovskikh, V. E. Gromov, and D. A. Romanov, Dokl. Phys., 58, No. 3, 82–84 (2013).CrossRefADSGoogle Scholar
  7. 7.
    D. A. Romanov, E. A. Budovskikh, and V. E. Gromov, J. Surf. Invest. X-ray, Synchrotron Neutron Tech., 5, No. 6, 1112–1117 (2011).CrossRefGoogle Scholar
  8. 8.
    D. A. Romanov, E. A. Budovskikh, Y. D. Zhmakin, and V. E. Gromov, Steel in Trans., 41, No. 6, 464–468 (2011).CrossRefGoogle Scholar
  9. 9.
    E. S. Vashchuk, D. A. Romanov, E. A. Budovskikh, and Y. F. Ivanov, Steel in Trans., 41, No. 6, 469–474 (2011).CrossRefGoogle Scholar
  10. 10.
    Yu. Ivanov, A. Teresov, O. Ivanova, et al., Adv. Mater. Res., 1013, 224–228 (2014).CrossRefGoogle Scholar
  11. 11.
    N. N. Koval’ and Yu. F. Ivanov, Russ. Phys. J., 51, No. 5, 505–516 (2008).CrossRefGoogle Scholar
  12. 12.
    D. Brandon and U. Kaplan, Microstructure of Materials. Research and Control Methods [in Russian], Tekhnosfera, Moscow (2004).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. V. Kapralov
    • 1
  • E. A. Budovskikh
    • 1
  • V. E. Gromov
    • 1
  • Yu. F. Ivanov
    • 2
    • 3
  1. 1.Siberian State Industrial UniversityNovokuznetskRussia
  2. 2.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations