Advertisement

Russian Physics Journal

, Volume 58, Issue 3, pp 394–398 | Cite as

Study of Graphene Formed in the Atmosphere of Vapors of Aromatic Hydrocarbons

  • B. A. Baitimbetova
  • B. M. Vermenichev
  • Yu. A. Ryabikin
  • Z. A. Mansurov
  • A. A. Abdikasova
Article
  • 46 Downloads

For the first time graphene structures are obtained by reactive magnetron sputtering with the graphite cathode in vapors of one of the representatives of the wide class of aromatic hydrocarbons – naphthalene. The carbon grid of the molecular structure of aromatic hydrocarbons coincides with the graphene of the carbon grid. The paper presents the technique of obtaining graphene and results of investigations of its structural peculiarities by methods of Raman light scattering spectroscopy, electron paramagnetic resonance, and atomic force microscopy. Graphene peaks with the vibrational mode (2D-zone) at a frequency of ~2728 cm–1 are identified by the method of Raman spectroscopy. Results of investigations by the method of atomic force microscopy confirm the formation of graphene sheets and carbon nanotubes. Results of investigations are presented and discussed.

Keywords

graphene structure of graphene carbon nanotubes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Geim and K. S. Novoselov, Nature Mater., 6, No. 3, 183–191 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    P. B. Sorokin and L. A. Chernozatonskii, Usp. Fiz. Nauk, 183, No. 2, 113–132 (2013).CrossRefGoogle Scholar
  3. 3.
    P. B. Kashtanov, B. M. Smirnov, and R. Khippler, Usp. Fiz. Nauk, 177, No. 5, 473–510 (2007).CrossRefGoogle Scholar
  4. 4.
    B. A. Baitimbetova and B. M. Vermenichev, Methods of obtaining carbon nanostructures by magnetron reactive sputtering of graphite in sublimated vapors of aromatic hydrocarbons, RK Patent No. 2013/0803.1.Google Scholar
  5. 5.
    R. J. Nemanich and S. A. Solin, Phys. Rev., B20, No. 2, 392–401 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    S. Reich and Ch. Thomsen, Phil. Trans. Royal Soc. London, A362, 2271–2288 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    A. C. Ferrari, Solid State Commun., 143, 47–57 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    Zh. Ni, Y. Wang, T. Yu, and Z. Shen, Nano Res., No. 1, 273–291 (2008).Google Scholar
  9. 9.
    T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, et al., Phys. Rev., B79, No. 20, 205433 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, et al., Phys. Rev. Lett., 97, 187401–12 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • B. A. Baitimbetova
    • 1
  • B. M. Vermenichev
    • 1
  • Yu. A. Ryabikin
    • 2
  • Z. A. Mansurov
    • 3
  • A. A. Abdikasova
    • 1
  1. 1.K. I. Satpaev Kazakh National Technical UniversityAlmatyRepublic of Kazakhstan
  2. 2.Physical-Technical InstituteAlmatyRepublic of Kazakhstan
  3. 3.Combustion Problems InstituteAlmatyRepublic of Kazakhstan

Personalised recommendations