Advertisement

Russian Physics Journal

, Volume 57, Issue 12, pp 1743–1752 | Cite as

Cosmological Evolution of a Boltzmann Plasma with Interparticle Phantom Scalar Interaction. I. Symmetric Cases

  • Yu. G. Ignat’ev
  • M. L. Mikhailov
Article

On the basis of a previously developed macroscopic theory of statistical systems with an interparticle scalar interaction, numerical models of the cosmological evolution of a two-component Boltzmann system of scalar charged particles have been constructed and analyzed in the case of symmetry between particles and antiparticles. The main features of this class of cosmological models have been identified, in particular, the possibility of quite rapid transitions to different regimes of cosmological expansion has been demonstrated.

Keywords

cosmological evolution Boltzmann plasma scalar interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Yu. G. Ignat’ev, Russ. Phys. J., 25, No. 4, 372–375 (1982).Google Scholar
  2. 2.
    Yu. G. Ignat’ev, Russ. Phys. J., 26, No. 8, 686–690 (1983).Google Scholar
  3. 3.
    Yu. G. Ignat’ev, Russ. Phys. J., 26, No. 8, 690–694 (1983).Google Scholar
  4. 4.
    Yu. G. Ignat’ev, Russ. Phys. J., 26, No. 12, 1065–1067 (1983).Google Scholar
  5. 5.
    Yu. Ignat'ev and R. Miftakhov, Grav. Cosmol., 12. – Nos. 2–3, 179–184 (2006).ADSMATHGoogle Scholar
  6. 6.
    Yu. G. Ignatyev and R. F. Miftakhov, Grav. Cosmol., 17, No. 2, 190–193 (2011); arXiv:1011.5774[gr-qc] CrossRefADSMATHGoogle Scholar
  7. 7.
    Yu. G. Ignat’ev, Russ. Phys. J., 55, No. 2, 166–172 (2012).CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Yu. G. Ignat’ev, Russ. Phys. J., 55, No. 5, 550–560 (2012).CrossRefMathSciNetGoogle Scholar
  9. 9.
    Yu. G. Ignat’ev, Russ. Phys. J., 55, No. 11, 1345–1350 (2012).CrossRefMathSciNetGoogle Scholar
  10. 10.
    Yu. G. Ignat’ev, Prostr., Vremya, Fund. Vzaimod., No. 1, 47–69 (2014). Yu. G. Ignat’ev, A. A. Agathonov, and D.Yu. Ignatyev, Grav. Cosmol., 20, No. 4 (2014) (to be published).Google Scholar
  11. 11.
    M. N. Lebedev, Special Functions and Their Applications [in Russian], State Press of Physical-Mathematical Literature, Moscow (1963).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.N. I. Lobachevskii Institute of Mathematics and MechanicsKazan’ Federal UniversityKazan’Russia

Personalised recommendations