Advertisement

Russian Physics Journal

, Volume 57, Issue 10, pp 1313–1320 | Cite as

Reaction Sintering of Porous Shape-Memory Titanium−Nickelide-Based Alloys

  • N. V. Artyukhova
  • Yu. F. Yasenchuk
  • Kim Ji-Soon
  • V. É. Gunther
Article

The problems of reaction sintering of porous shape-memory Ti−Ni-based alloys are examined. An analysis of the structure and parameters of shape-memory materials produced with the use of different reaction sintering modes is performed. The temperature and time intervals are determined over which liquid-phase sintering points responsible for a qualitative change in the TiNi phase of the reaction-sintered Ti−Ni system are observed. The morphological structure and properties of the porous materials are investigated. Models for interactions between phases and phase transformations in the sintered alloys are built. It has been found that changes in the deformation parameters of the porous titanium nickelide-based alloys correlate with an increase in the volume fraction of the TiNi phase and with its wholeness as the sintering time is increased.

Keywords

porous titanium nickelide alloy Ti−Ni system reaction sintering liquid-phase sintering shape memory TiNi phase scanning electron microscopy x-ray spectral microanalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Skorokhod and S. M. Solonin, Physical-Metallurgical Fundamentals of Sintering of Powders [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  2. 2.
    M. Whitney, S. F. Corbin, and R. B. Gorbet, Acta Mater., 56, No. 3, 559 (2007).CrossRefGoogle Scholar
  3. 3.
    N. V. Artyukhova, A. N. Monogenov, Yu. F. Yasenchuk, and V. E. Gunther, Russ. J. Non-Ferrous Metals, 53, No. 1, 95–100 (2012).CrossRefGoogle Scholar
  4. 4.
    V. E. Gunther, V. N. Khodorenko, Yu. F. Yasenchuk, et al., Titanium Nickelide. A New Generation Medical Material [in Russian], MITs Publishing House, Tomsk (2006).Google Scholar
  5. 5.
    E. Becker, J. Kerster, G. Freyer, L. Frolich, Practische Fragen zur Prufung von Metallen [Russian translation], Metallurgiya, Moscow (1979).Google Scholar
  6. 6.
    V. Yu. Filimonov, Polzunov. Vestrnik, No. 4−1, 36 (2005).Google Scholar
  7. 7.
    A. P. Aldushin, A. G. Merzhanov, and B. I. Haikin, Dokl. Akad. Nauk SSR, 204, No. 5, 1139–1142 (1972).Google Scholar
  8. 8.
    P. Weller and H. Exner, Phys. Sintering, 5, No. 2/2, 25–37 (1973).Google Scholar
  9. 9.
    A. P. Savitskii, Liquid-Phase Sintering of Systems with Interacting Components [in Russian], Nauka, Novosibirsk (1991).Google Scholar
  10. 10.
    G. A. Libenson, Fundamentals of Powder Metallurgy [in Russian], Metallurgiya, Moscow (1987).Google Scholar
  11. 11.
    B. B. Straumal, Phase Transitions at Grain Boundaries [in Russian], MISiS, Moscow (2004).Google Scholar
  12. 12.
    Merton C. Flemings, Solidification Processing, McGraw Hill Book Company, New York (1974).Google Scholar
  13. 13.
    V. I. Dobatkin, V. I. Dobatkin Selected Scholarly Work [in Russian], VIlS, Tech. Phys. Lett., 27, No. 11, 970–972 (2001).CrossRefGoogle Scholar
  14. 14.
    H. C. Tong, Acta Metall., 22, No. 7 (1974), p. 887.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. V. Artyukhova
    • 1
  • Yu. F. Yasenchuk
    • 1
  • Kim Ji-Soon
    • 2
  • V. É. Gunther
    • 1
  1. 1.Scientific Research Institute of Medical Materials and Shape-Memory Implants of the V. D. Kuznetsov Physical-Technical Institute at National Research Tomsk State UniversityTomskRussia
  2. 2.University of UlsanUlsanSouth Korea

Personalised recommendations