Advertisement

Russian Physics Journal

, Volume 57, Issue 6, pp 723–730 | Cite as

Structural and Strength Properties of Porous TiNi-Base Alloys Obtained by Self-Propagating Hightemperature Synthesis and Diffusion Sintering

  • V. N. Khodorenko
  • S. G. Anikeev
  • V. É. Gunther
CONDENSED-STATE PHYSICS

The structural features and physical-mechanical properties of porous TiNi-base materials obtained by selfpropagating high-temperature synthesis and diffusion sintering have been studied. The physical-mechanical characteristics of the materials are shown to be determined by the special features inherent in the formation of their micro- and macrostructure. The ultimate strength and failure strain are found to depend on the porosity, pore and interporous bridge size and distribution, and phase-chemical composition of the materials under consideration. The strength properties of the sintered material are twice as high as those of its synthesized cousin. This is due to the macrostructural uniformity, less-pronounced phase-chemical nonuniformity, and precipitation hardening of the TiNi-base matrix by introducing a fine dispersion of TiNi3 particles. An analysis of the fracture surface patterns has revealed tough-brittle fracture of the materials.

Keywords

porous TiNi-base alloys self-propagating high-temperature synthesis diffusion sintering structure strength failure strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shape-Memory Materials and New Technologies in Medicine, Prof. V. É. Gunther, ed. [in Russian], NPP MITs Publishing House, Tomsk (2007).Google Scholar
  2. 2.
    Shape-Memory Materials and New Medical Technologies, Prof. V. É. Gunther, ed. [in Russian], NPP MITs Publishing House, Tomsk (2010).Google Scholar
  3. 3.
    V. É. Gunther, V. N. Khodorenko, Yu. F. Yasenchuk, et al, Titanium Nickelide. A New Generation Medical Material [in Russian], NPP MITs Publishing House, Tomsk (2006).Google Scholar
  4. 4.
    Biocompatible Shape-Memory Materials and New Technologies in Stomatology, Prof. V. É. Gunther, ed. [in Russian], NTL Publishing, Tomsk (2006).Google Scholar
  5. 5.
    V. N. Khodorenko, A. V. Gunther, A. A. Radkevich, et al., Biocompatible Shape-Memory Materials and New Technologies in Medicine, Prof. V. E. Gunther, ed. [in Russian], NTL Publishing, Tomsk, (2004).Google Scholar
  6. 6.
    V. N. Khodorenko, S. P. Sysolyatin, T. L. Chekalkin, et al, Implant. Pam. Formy, Nos. 1−2, 1−15 (2000).Google Scholar
  7. 7.
    O. V. Kokorev, V. N. Khodorenko, S. G. Anikeev, et al., Vestn. Nov. Medits. Tekhnol., XIX, No. 1, 32−36, (2012).Google Scholar
  8. 8.
    O. V. Kokorev, V. N. Khodorenko, G. Ts. Dambaev, et al., Sib. Medits. Zh., 27, No. 1, 130−136 (2012).Google Scholar
  9. 9.
    V. N. Khodorenko, O. V. Kokorev, S. G. Anikeev, et al., Implant. Pam. Formy, Nos. 1−2, 68−76 (2011).Google Scholar
  10. 10.
    O. V. Kokorev, V. N. Khodorenko, S. G. Anikeev, et al., Implant. Pam. Formy, Nos. 1−2, 16−22 (2010).Google Scholar
  11. 11.
    V. N. Khodorenko, O. V. Kokorev, S. G. Anikeev, et al., Biocompatible Materials and New Technologies in Stomatology, Prof. V. E. Gunther, ed. [in Russian], NPP MITs Publishing House (2012).Google Scholar
  12. 12.
    V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds [in Russian], Tomsk University Publishing, Tomsk (1989), 214 pp.Google Scholar
  13. 13.
    A. P. Savitskii, Liquid-Phase Sintering of Systems with Interacting Components [in Russian], Nauka, Novosibirsk (1991).Google Scholar
  14. 14.
    Yu. F. Yasenchuk, V. N. Khodorenko, and V. É. Gunther, Biocompatible Shape-Memory Materials and New Technologies in Medicine, Prof. V. É. Gunther, ed. [in Russian], NTL Publishing, Tomsk (2004).Google Scholar
  15. 15.
    V. É. Gunther, V. N. Khodorenko, Yu. F. Yasenchuk, et al., Shape-Memory Medical Materials and Implants [in Russian], Tomsk University Publishing, Tomsk (1998).Google Scholar
  16. 16.
    V. É. Gunther, V. N. Khodorenko, T. L. Chekalkin, et al., Shape-Memory Medical Materials. Shape-Memory Materials and Implants, vol. 1, V. E. Gunter, ed. [in Russian], NPP MITs Publishing House, Tomsk (2011).Google Scholar
  17. 17.
    V. É. Gunther, Implant. Pam. Formy, Nos. 1−2, 98−110 (2012).Google Scholar
  18. 18.
    S. P. Belyaev, F. Z. Gil’mutdinov, and O. M. Komunnikova, Tech. Phys. Lett., 25, No. 7, 546−548 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. F. Yasenchuk, V. N. Khodorenko, and V. É. Gunther, Implant. Pam. Formy, Nos. 1−2, 14−18 (2005).Google Scholar
  20. 20.
    V. É. Gunther, The Methodological Features of the Deformation Behavior of Medical Metal Materials and Implants: Guidance Manual [in Russian], NPP MITs Publishing House (2013).Google Scholar
  21. 21.
    A. N. Monogenov, N. V. Artyukhova, Yu. F. Yasenchuk, et al., Fundament. Probl. Sovrem. Materialoved., 6, No. 3, 59−64 (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. N. Khodorenko
    • 1
  • S. G. Anikeev
    • 2
  • V. É. Gunther
    • 1
  1. 1.Scientific Research Institute of Medical Materials and Shape-Memory ImplantsV. D. Kuznetsov Siberian Physical-Technical Institute at National Research Tomsk State UniversityTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations