Advertisement

Russian Physics Journal

, Volume 57, Issue 5, pp 615–620 | Cite as

Study of the Energy Characteristics of Metallized Mixed Compositions Based on a Binary Oxidizer at Increased Pressures

  • T. I. Gorbenko
  • M. V. Gorbenko
  • E. O. Dyundin
  • N. N. Zolotorev
Article
  • 36 Downloads

Results of a thermodynamic calculation of the energy characteristics for mixed compositions containing aluminum powder are presented. The influence of the aluminum content in the mixed compositions on the adiabatic combustion temperature, specific impulse, and composition of the combustion products is considered. Results of an experimental study of combustion of metallized mixed compositions in the pressure range from 0.1 to 6 MPa are presented. The effect of the aluminum powder dispersity and the relative content of the components of the mixed composition on the pressure dependence of the burning rate is demonstrated.

Keywords

thermodynamic calculation steady burning rate aluminum dispersity mixed composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Yagodnikov, Ignition and Combustion of Powdered Metals [in Russian], Bauman Moscow State Technical University Publishing House, Moscow (2009).Google Scholar
  2. 2.
    L. T. De Luca, L. Galfetti, F. Severini, et al., Combustion, Explosion, and Shock Waves, 41, No. 6, 680–692 (2005).CrossRefGoogle Scholar
  3. 3.
    E. M. Ponenko, A. A. Gromov, Yu. Yu. Shamina, et al., Combustion, Explosion, and Shock Waves, 43, No 1, 46–50 (2007).CrossRefGoogle Scholar
  4. 4.
    V. N. Simonenko and V. E. Zarko, in: Energetic Materials: Thirtieth International Annual Conference of ICT, Karlsruhe, Germany (1999), pp. 21-1–21-14.Google Scholar
  5. 5.
    V. A. Babuk, A. V. Gamzov, A. A. Glebov, and I. N. Dolotkazin, Khim. Fiz. Mezoskopiya, 8, No. 1, 33–44 (2006).Google Scholar
  6. 6.
    V. A. Arkhipov, M. V. Gorbenko, and L. A. Savel’eva, Combustion, Explosion, and Shock Waves, 45, No. 1, 40–47 (2009).CrossRefGoogle Scholar
  7. 7.
    D. I. Abugov and V. M. Bobylev, Theory and Calculation of Solid Fuel Rocket Engines [in Russian], Mashinostroenie, Moscow (1987).Google Scholar
  8. 8.
    B. G. Trusov, The Astra-4 Software Package for Modeling Chemical and Phase Equilibria at High Temperatures, Bauman Moscow State Technical University Publishing House, Moscow (1991).Google Scholar
  9. 9.
    V. A. Babuk, G. Ya. Pavlovets, V. Yu. Meleshko, and N. I. Shishov, Izv. Ross. Akad. Raket. Artiller. Nauk, No. 2 (39), 30–36 (2004).Google Scholar
  10. 10.
    A. A. Gromov, E. M. Popenko, A. B. Sergienko, et al., Combustion, Explosion, and Shock Waves, 41, No. 3, 303–314 (2005).CrossRefGoogle Scholar
  11. 11.
    A. A. Gromov, ed., Physics and Chemistry of Combustion of Metallic Nanopowders in Nitrogen-Containing Gaseous Mixtures [in Russian], Tomsk State University Publishing House, Tomsk (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • T. I. Gorbenko
    • 1
  • M. V. Gorbenko
    • 1
    • 2
  • E. O. Dyundin
    • 1
  • N. N. Zolotorev
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations